
OCFI: Make Function Entry Identification Hard Again

Chengbin Pang∗

State Key Laboratory for Novel
Software Technology and Department
of Computer Science and Technology
Nanjing University, Nanjing, China

Tiantai Zhang∗

State Key Laboratory for Novel
Software Technology and Department
of Computer Science and Technology
Nanjing University, Nanjing, China

Xuelan Xu
State Key Laboratory for Novel

Software Technology and Department
of Computer Science and Technology
Nanjing University, Nanjing, China

Linzhang Wang
State Key Laboratory for Novel

Software Technology and Department
of Computer Science and Technology
Nanjing University, Nanjing, China

Bing Mao
State Key Laboratory for Novel

Software Technology and Department
of Computer Science and Technology
Nanjing University, Nanjing, China

ABSTRACT

Function entry identi�cation is a crucial yet challenging task for
binary disassemblers that has been the focus of research in the past
decades. However, recent researches show that call frame informa-
tion (CFI) provides accurate and almost complete function entries.
With the aid of CFI, disassemblers have signi�cant improvements
in function entry detection. CFI is speci�cally designed for e�cient
stack unwinding, and every function has corresponding CFI in x64
and aarch64 architectures. Nevertheless, not every function and in-
struction unwinds the stack at runtime, and this observation has led
to the development of techniques such as obfuscation to complicate
function detection by disassemblers.

We propose a prototype of ocfi to obfuscate CFI based on this
observation. The goal of ocfi is to obstruct function detection of
popular disassemblers that use CFI as a way to detect function
entries. We evaluated ocfi on a large-scale dataset that includes
real-world applications and automated generation programs, and
found that the obfuscated CFI was able to correctly unwind the stack
and make the detection of function entries of popular disassemblers
more di�cult. Furthermore, on average, ocfi incurs a size overhead
of only 4% and nearly zero runtime overhead.

CCS CONCEPTS

• Security and privacy → Software reverse engineering; Soft-
ware security engineering.

KEYWORDS

function entry detection, obfuscation, binary disassembly

ACM Reference Format:

Chengbin Pang, Tiantai Zhang, Xuelan Xu, Linzhang Wang, and Bing Mao.
2023. OCFI: Make Function Entry Identi�cation Hard Again. In Proceedings

∗These authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598097

of the 32nd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3597926.3598097

1 INTRODUCTION

Stack unwinding is a crucial process used in debugger and exception
handling that involves removing function entries from the function
call stack at runtime. To achieve this, the System V ABI in x86
architecture reserves a register ebp to represent the base of stack
frame [25]. Although it is convenient to walk the stack with the
help of ebp, it incurs signi�cant overheads due to several reasons.
Firstly, one general register is reserved at all times, which is rare
in x86 architecture which only has 8 general registers. Secondly,
every function requires a speci�c prologue and epilogue to save and
restore the base of the previous stack frame. To overcome the above
problems, the .eh_frame section has been de�ned, which encodes
the frame pointer and saved registers of every function with the
DWARF format in x86_64 architecture [27]. Section .eh_frame

contains call frame information (CFI) which represents a table for
every address in binary code, de�ning how to set registers to restore
the previous stack and reveal the range of every function. For more
details on the background, please refers to section §2.

Identifying function entries plays a critical role in reverse engi-
neering [3, 6, 33, 34]. Binary disassemblers have found the secret
of CFI and leveraged it as the "oracle" of function entry [1, 2, 34].
Recent works show that disassemblers could recover nearly 100%
of functions correctly with the help of .eh_frame section [33,
34]. Moreover, we studied popular disassemblers (Ghidra [1] and
angr [2] which leverage .eh_frame to detect function entries) to
disassemble the binaries with and without .eh_frame section on
the x64 dataset presented in [33, 35]. The result is shown in Figure 1.
From the result, we �nd that .eh_frame section could improve the
accuracy (F1-score [41]: 2∗%A428B8>=∗'420;;

%A428B8>=+'420;;
) of function entries iden-

ti�cation signi�cantly on high optimization levels. Furthermore, the
use of .eh_frame may have implications for malicious purposes,
such as software plagiarism [26], malware camou�age [39, 47], and
vulnerability exploitation [8, 14, 17, 44].

Binary obfuscation is widely studied to obstruct reverse engi-
neering, such as encoding [42, 54], bogus insertion [10], opaque
predicates [10, 51, 55], and control �ow �attening [9, 19]. However,

804

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3597926.3598097
https://doi.org/10.1145/3597926.3598097
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598097&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengbin Pang, Tiantai Zhang, Xuelan Xu, Linzhang Wang, and Bing Mao

O0 O2 O3 Os Ofast
60

65

70

75

80

85

90

95

100

GHIDRA
GHIDRAN
ANGR
ANGRN

Figure 1: The F1 scores of function entries detection with and

without .eh_frame section among di�erent optimizations.

Ghidra and angr indicate the result with .eh_frame section.

ghidran and angrn indicate the result without .eh_frame

section.

transformation or encryption in the above works brings extra over-
head compared with the original binary code and does not work
on CFI directly.

We discovered that not every address in binary code requires
stack unwinding, providing insight into obfuscating/debloating the
CFI. In this paper, we propose a prototype of obfuscating CFI to
obstruct function detection of popular disassemblers that leverage
.eh_frame section. This approach entails removing unnecessary
CFI while retaining the necessary information to ensure correct
stack unwinding. However, this approach presents three challenges
for obfuscation.

• C1 – How to determine if a function may unwind the stack at

runtime?

• C2 – How to minimize the range represented by CFI if this function

may unwind the stack?

• C3 – How to debloat the CFI to unwind the stack correctly according

to the minimized range?

To address C1, we observe that popular compilers, such as GCC
and Clang/LLVM, mark known functions that do not unwind the
stack as nounwind. Based on the observation, we perform back-
ward propagation on the call graph from the known nounwind

functions to other functions. This approach enabled us to mark
other functions that do not unwind the stack as nounwind.

To address C2, we iterate over every function instruction to
determine if it could unwind the stack. Speci�cally, we check if the
instruction is a direct call and if the called function is marked as
nounwind. If not, we concluded that the instruction could unwind
the stack. As the targets of indirect calls are not easily determined
statically, we conservatively assume the indirect call may unwind
the stack. Afterward, we mark the �rst and last instructions that
could unwind the stack as the range of CFI.

To address C3, we need to determine the correct registers rep-
resented in the minimized CFI. Speci�cally, we perform data�ow

analysis to calculate the initialized saved registers and virtual frame
pointer inside the minimized CFI.

We implemented ocfi
1 using Clang/LLVM 12.0 to obfuscate

CFI. To evaluate the availability and e�ectiveness of ocfi, we built
a large-scale dataset that covers benchmarks, C/C++ real-world
applications, and automated generating programs. Based on the
evaluation, we found that ① the obfuscated binaries could unwind
the stack correctly and ② the obfuscated binaries could obstruct
function detection of popular disassemblers (resulting in an average
decrease of 37.3% in F1 Score).

The main contributions of this paper are summarized as follows:

• We present the idea of obfuscating CFI without harming the
functionality of unwinding stack.

• We present usmith which generates C/C++ programs with
try/catch automatically and could be leveraged to test the
availability of exception handling.

• We implement the prototype for ocfi and usmith and pub-
lish the source code at https://github.com/NJUSeclab/OCFI
for future research.

• We evaluate ocfi thoroughly and demonstrate the availabil-
ity and e�ectiveness of ocfi.

• We test the cost of obfuscation for ocfi, which shows only 4%
size overhead and nearly zero runtime overhead on average.

In the rest of this paper, we focus on the application of our
obfuscating CFI idea to build ocfi. In §2, we give the technical
background of CFI and discuss the necessary CFI for every function
to unwind the stack correctly. In §3, we discuss the research scope
of ocfi. In §4, we explain the design of ocfi. In §5, we detail the
implementation of ocfi. In §6, we present the evaluation of ocfi.
§7 discusses our limitations and future works. §8 summarizes the
related works and we conclude this paper in §9.

2 TECHNICAL BACKGROUND

In this section, we provide an introduction to the basics of unwind-
ing the stack with call frame information (CFI). This foundational
knowledge is essential for understanding how to obfuscate CFI.
We also discuss the background of function entry identi�cation by
popular disassemblers, providing context for the need to obfuscate
this information.

2.1 Exception Handling

Section .eh_frame is designed for stack unwinding. When a
function is called, the CFI is stored in a data structure known as
the Exception Handling Frame (EH Frame), which is located in
the .eh_frame section. When an exception is thrown, the function
_Unwind_RaiseException in libgcc is called to process the excep-
tion. We will detail the process as follows.

• Step-1: When an exception is thrown, libgcc �rst checks the
program counter (PC) at the throw site, and iterates every FDE
(Frame Description Entry) in .eh_frame section to �nd the cur-
rent FDE based on the PC. FDE is the basic unit of .eh_frame.
Normally, every function has the corresponding FDE, which
consists of the range of the function, CFI, and augmentations
(if any). The augmentations allow a language-speci�c data area

1
ocfi is the abbreviations of Obfuscating Call Frame Information.

805

https://github.com/NJUSeclab/OCFI

OCFI: Make Function Entry Identification Hard Again ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

1 406200: push %r15

2 406202: push %r14

3 406204: push %rbx

4 406205: test %rsi,%rsi

5 406208: je 40625a

6 ...

7 406239: callq 406270

8 40623e: mov %r14,%rdi

9 406241: callq 403600

<_ZdlPv@plt>

10 ...

11 406258: jmp 406210

12 40625a: pop %rbx

13 40625b: pop %r14

14 40625d: pop %r15

15 40625f: retq

16 406260: mov %rax,%rdi

17 406263: callq 4060b0

<__clang_call_terminate>

(a) Assembly code

1 FDE pc=406200..406268

2 DW_CFA_def_cfa: r7 (rsp) ofs 16

3 DW_CFA_advance_loc: 2 to 406202

4 DW_CFA_offset: r16 (rip) at cfa-8

5 DW_CFA_advance_loc: 2 to 406204

6 DW_CFA_def_cfa_offset: 24

7 DW_CFA_advance_loc: 1 to 406205

8 DW_CFA_def_cfa_offset: 32

9 DW_CFA_offset: r3 (rbx) at cfa-32

10 DW_CFA_offset: r14 (r14) at cfa-24

11 DW_CFA_offset: r15 (r15) at cfa-16

12 DW_CFA_advance_loc: 86 to 40625b

13 DW_CFA_def_cfa_offset: 24

14 DW_CFA_advance_loc: 2 to 40625d

15 DW_CFA_def_cfa_offset: 16

16 DW_CFA_advance_loc: 2 to 40625f

17 DW_CFA_def_cfa_offset: 8

18 DW_CFA_advance_loc: 1 to 406260

19 DW_CFA_def_cfa_offset: 32

(b) FDE entry from EH_FRAME

PC CFA rbx r14 r15 rip

406200 rsp+16 – – –
406202 rsp+16 – – – *(cfa-8)
406204 rsp+24 – – – *(cfa-8)
406205 rsp+32 *(cfa-32) *(cfa-24) *(cfa-16) *(cfa-8)
40625b rsp+24 *(cfa-32) *(cfa-24) *(cfa-16) *(cfa-8)
40625d rsp+16 *(cfa-32) *(cfa-24) *(cfa-16) *(cfa-8)
40625f rsp+8 *(cfa-32) *(cfa-24) *(cfa-16) *(cfa-8)
406260 rsp+32 *(cfa-32) *(cfa-24) *(cfa-16) *(cfa-8)

(c) Unwinding table

Figure 2: A function from Gold-2.30 and its FDE. (c) is the unwinding table according to the FDE, rip represents the return

address of the previous caller function.

(LSDA) and personality routine to be associated with every
FDE.

• Step-2: If current FDE contains LSDA and personality rou-
tine, the libgcc would call the personality routine to interpret
the LSDA to check if a proper handler for the exception could
be found. If the handler is found, libgcc would switch the PC
to the handler code. Otherwise, libgcc goes to Step-3.

• Step-3: The libgcc recovers the registers saved by the current
function and removes its stack frame by adjusting the stack
pointer with the help of CFI. Until now, the PC is set to the
return address and repeats Step-2. However, if the stack is empty,
libgcc would exit abnormally.

In summary, the CFI is a crucial structure used for unwinding
the stack and handling exceptions.

2.2 Call Frame Information

To properly unwind the stack, each function is associated with its
corresponding CFI, which is essentially a table that describes how to
restore the previous call frame by setting the registers appropriately
for every address in the program text [27]. The CFI is encoded using
the DWARF standard [45].

CFI de�nes a virtual address CFA (Canonical Frame Address)
which is the address other addresses within the call frame can be rel-
ative to. CFA points to the base of stack frame regularly. To represent
CFA and other saved registers, call frame instructions are de�ned in
every CFI as shown in Figure 2b. In line 2, DW_CFA_def_cfa takes
two operands representing a register (rsp) and an o�set (16), which
de�nes the CFA to use the provided register and o�set. Thus, CFA
is represented as��� = AB? + 16. In line 3, DW_CFA_advance_loc

takes a constant as the operand which is used to create a new ta-
ble row with the speci�ed location and all the following rules are
recorded in the location. DW_CFA_offset takes two operands rep-
resenting the saved register (rip) and the o�set relatives to CFA.
As shown in line 4, the rip is represented as A8? = ∗(2 5 0 − 8).
DW_CFA_def_cfa_offset takes a constant as the operand which
de�nes current CFA to use the constant as the o�set but to keep the

prede�ned register. As shown in line 6, current CFA is represented
as��� = AB? + 24. The unwinding table is shown in Figure 2c after
interpreting the call frame instructions shown in Figure 2b.

Suppose the program throws an exception at 0x406241 (line 9 in
Figure 2a). If the current function cannot handle the exception cor-
rectly, the program will unwind the stack. Speci�cally, the program
will search the unwinding table shown in Figure 2c, and �nd that
the current PC is within the range of 0x406205 and 0x40625B. The
program will then calculate the CFA as rsp+32 and the rip (saved
return address) as *(CFA-8). With this information, the program
will unwind the stack to the previous caller function.

2.3 Attributes Related to Unwinding

In GCC and Clang compilers, certain function attributes de�ne func-
tions that cannot throw an exception or unwind the stack. Specif-
ically, both GCC [13] and Clang [49] de�ne "nothrow" attributes
to inform the compiler that the annotated function does not throw
an exception. LLVM de�nes "nounwind" attribute to indicate that
the function never raises an exception [38]. It’s worth noting that
LLVM would mark some known functions in the standard library,
such as atexit, frame_dummy, and so on, as "nounwind".

2.4 Is Call Frame Information Necessary for
Every Function?

The speci�cations [11, 27] de�ne that every function should have
the CFI to support stack unwinding. Pang et al. [34] also observed
that nearly every function of x64 binaries has the corresponding
CFI in real-world applications. However, here comes the question,
is the CFI necessary for every function?

Let � = (+ , �) be a call graph, where + is the set of nodes (i.e.,
functions) and � is the set of edges (i.e., calls) in the graph. Let 5 be
a function in� , and let (be the set of successors of 5 in� . Then, (
is the set of functions that can be called from 5 in � , which means
that for any function 6 in (, there exists an edge between 5 and 6.

806

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengbin Pang, Tiantai Zhang, Xuelan Xu, Linzhang Wang, and Bing Mao

Mathematically, this can be expressed as:

(= {6| (5 , 6) ∈ �} (1)

If one of the successors of 5 in (unwinds the stack or 5 raises an
exception, then 5 unwinds the stack2. Let* (5) represent whether
the function 5 unwinds the stack or not and '(5) represent whether
the function 5 raises an exception. Mathematically, we could deduce
* (5) with the following equation:

* (5) =

{

)AD4, '(5) =)AD4,
∨

8=1...; * (68) where: 68 ∈ (, '(5) = �0;B4
(2)

From the above equation, we can infer that if all the functions
called by the function 5 do not unwind the stack and 5 does not
raise an exception, then function 5 does not unwind the stack either.

2.5 Function Entries Identi�cation

To identify the function entries, the disassemblers present mul-
tiple strategies. Mainstream disassemblers �rst identify the start
point (i.e., the main function) of the program and perform the re-
cursive disassembling from the start point and add the targets
of call instructions as new function entries. However, there still
leaves gaps after the disassembling as the existence of indirect calls.
To detect the remaining functions, disassemblers scan the non-
disassembled code with data-mining models [6, 28] or common
function prologues [2, 40]. The above approaches are heuristic and
do not guarantee the correctness of function entries [33]. There
emerges another way to detect functions that leverages the CFI as
the “oracle" of function entries [1, 2, 34]. The related works [33, 34]
found that these disassemblers achieve nearly full coverage with
high accuracy for x64 binaries.

3 RESEARCH SCOPE

Our objective is to increase the di�culty of disassembling by ob-
fuscating the CFI. Our target architectures are x64 and AArch64
for two reasons: �rstly, they are popular and widely supported by
most disassemblers. Secondly, their speci�cations [11, 27] de�ne
the CFI of functions. To evaluate the e�ectiveness of our tool, we
have selected disassemblers such as angr, Ghidra, and fetch that
rely on CFI to identify function entries. We have developed the
ocfi prototype using Clang/LLVM and believe that it can be easily
adapted for other compilers.

4 DESIGN OF OCFI

We present ocfi to obfuscate CFI. Figure 3 shows the overview of
ocfi. ocfi contains two major components: no-unwinding prop-
agation and obfuscation. The no-unwinding propagation of ocfi
is used to propagate the attribute nounwind of known function to
other functions among the call graph.

In the obfuscation process, ocfi leverages two strategies to ob-
fuscate the CFI. (1) If the function is marked as nounwind, ocfi
would set the range of FDE randomly inside the function. (2) If the
function may unwind the stack, ocfi would analyze the minimized

2There is a special case where 5 catches the thrown exception(s) and does not un-
wind the stack. As we cannot statically determine if 5 could catch the exception, we
conservatively consider that 5 cannot catch the exception.

Algorithm 1: No-unwinding Propagation

Input :Call graph��
/* Compute the strongly connected components of �� */

1 (��B = computeSCCs(��)
/* bottom-up traversal on SCCs */

2 for each (�� in (��B do

3 Unwind = False

4 for each function � in (�� do

5 for each instruction � in � do

6 if isa<CallInst>(�) then

7 if callee = � .getCalleeFunction() then

8 if MayUnwind(callee) then

9 Unwind = True

10 end

11 end

12 end

/* If the instruction is a indirect call, we assume its

callee(s) unwind the stack conservatively. */

13 if isa<IndirectCall>(�) or isa<ResumeInst>(�) then

14 Unwind = True

15 end

16 end

17 end

18 if ¬ Unwind then

19 for each function � in (�� do

20 markNounwind(�)

21 end

22 end

23 end

unwinding range (MUR) that could correctly unwind the stack, and
set the range to the MUR.

In the following sections, we will explain in detail the following
questions: ❶ how does ocfi propagate nounwind attribute among
call graph (§4.1); ❷ how does ocfi analyze minimized unwinding
range (§4.2); ❸ how does ocfi debloat/obfuscate CFI safely (§4.3).

4.1 No-unwinding Propagation

Compilers or programmers mark speci�c functions as nounwind,
which represents the functions that would not unwind the stack.
To propagate the nounwind attribute of the speci�c functions to
other functions, we perform bottom-up analysis on the call graph.
As there may exist cycles in the call graph, ocfi groups the call
graph into several strongly connected components (SCCs) [48] and
leverages bottom-up propagation on the SCCs. The propagation
algorithm is shown in algorithm 1.

Speci�cally, for every SCC, ocfi iterates every function and
checks if one of the instructions may unwind the stack, if yes, mark
all of the functions inside the SCC as unwinding. We consider the
following situations to check if the instruction � may unwind the
stack, if one of the situations satis�es, the instruction may unwind
the stack at runtime.

(1) If the instruction is a direct call, ocfi extracts the called
function and checks if the called function may unwind the
stack. As ocfi performs bottom-up iteration on the SCCs,

807

OCFI: Make Function Entry Identification Hard Again ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

C/C++

Call Graph

means the function unwind stack

No-unwinding Propagation Obfuscate CFI

FDE pc=406200..406268
DW_CFA_def_cfa:r7(rsp) ofs 16
DW_CFA_advance_loc:2 to 406202

DW_CFA_offset:r16(rip) at cfa-8
DW_CFA_advance_loc:2 to 406204
DW_CFA_def_cfa_offset: 24
DW_CFA_advance_loc: 1 to 406205
DW_CFA_def_cfa_offset: 32
DW_CFA_offset:r3(rbx) at cfa-32

DW_CFA_offset:r14(r14) at cfa-24
DW_CFA_offset:r15(r15) at cfa-16
DW_CFA_advance_loc:86 to 40625b
DW_CFA_def_cfa_offset: 24
…

Original CFI

FDE pc=406239..406268
DW_CFA_def_cfa:r7(rsp) ofs 32

DW_CFA_offset:r16(rip) at cfa-8

DW_CFA_offset:r3(rbx) at cfa-32

DW_CFA_offset:r14(r14) at cfa-24
DW_CFA_offset:r15(r15) at cfa-16
DW_CFA_advance_loc:34 to 40625b
DW_CFA_def_cfa_offset: 24
…

Obfuscated CFI

Figure 3: The overall work�ow of ocfi. The example of Call Frame Instructions (CFI) is based on Figure 2b. In this example,

the red color is used to highlight the modi�cations introduced by ocfi in comparison to the original version.

ocfi could determine the unwinding status of the called
function ahead of the caller function.

(2) If the instruction is an indirect call, ocfi could not determine
the targets of the indirect call statically, ocfi assumes the
indirect call may unwind the stack conservatively.

(3) If the instruction could unwind the stack semantically, such
as ResumeInst [24] in LLVM IR.

Otherwise, the functions in the SCC should mark as nounwind.
At the end, ocfi could propagate nounwind attribute from known
functions to other functions.

4.2 Minimized Unwinding Range

The minimized unwinding range is the minimized range of FDE
entry that could be leveraged to unwind the stack correctly. It is
leveraged by the function(s) that may unwind the stack. As the FDE
entry represents the continuous region that may unwind the stack,
the minimized unwinding range is continuous too. ocfi divides
functions into two categories based on whether the function is
marked as nounwind. For the function that is marked as nounwind,
the minimized unwinding range is empty.

To analyze the minimized unwinding range of the function that
may unwind the stack, ocfi iterates the basic blocks of the function
linearly. For every basic block ��8 , if one of the instructions may
unwind the stack, ocfi deems ��8 unwinds the stack. ocfi could
obtain the list of basic blocks that may unwind the stack in the
function: ®*� = {��1, ��2, ..., ��=}.

ocfi then sorts the ®*� by the address of the basic block and gets
the �rst one �1 and the last one !1 . As ocfi operates the basic block
at the end of the optimization, the layout of the basic blocks that
ocfi handles is consistent with the layout of binary code. So far ocfi
could obtain the minimized unwinding range [�1 , !1]. However, if
the �1 is the same as the �rst basic block of current function, which
means that the beginning address of MUR equals the address of
function entry. To handle this problem, we make further checks
and transformations. Speci�cally, if the �rst instruction that may
unwind the stack is inside the �rst basic block of current function,
we split the basic block into two basic blocks at the location of
�rst unwinding instruction. By the way, we decided not to always
split the �rst basic block at the �rst unwinding instruction for the

BB1

BB2

BB3

BB4

BB5

BB2

BB3

Initialization Sites

Figure 4: An example to illustrate the determination of ini-

tialization sites. A rectangle represents a basic block of a

function and a line represents the control �ow between basic

blocks. The rectangle �lled with red represents a basic block

inside MUR. As BB2 and BB3 have incoming edges outside

MUR, we should initialize registers at the beginning of these

basic blocks.

purpose of preserving the original layout of basic blocks as much
as possible to avoid a�ecting subsequent optimizations.

In summary, we could conclude the minimized unwinding range
of function 5 with the following equations:

"*'(5) =

{

∅, * (5) =)AD4

[�1 , !1], * (5) = �0;B4
(3)

4.3 Debloat/Obfuscate Call Frame Information

As mentioned in §2, CFI stores register information that could
be leveraged to restore the previous frame. To debloat/obfuscate
CFI safely, the state of registers inside the minimized unwinding
range should be calculated properly. As illustrated in §2, the states

808

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengbin Pang, Tiantai Zhang, Xuelan Xu, Linzhang Wang, and Bing Mao

of registers represented in the CFI are calculated based on the
initialization states. To guarantee the functionality of unwinding
the stack, ocfi should satisfy the following two requirements:

• R1 – The initialization sites inside the minimized unwinding range

should be determined.

• R2 – The states of registers at initialization sites should be calcu-

lated.

To meet the requirement R1, ocfi iterates over every basic block
inside the minimized unwinding range and checks if the basic block
has the incoming edge(s) whose source is outside the minimized
unwinding range. If so, ocfi sets the beginning of the basic block
as the initialization site. An example is illustrated in Figure 4.

To meet the requirement R2, ocfi calculates the proper states of
registers at the initialization sites. There are two kinds of registers
that should be considered:

• The canonica frame address (CFA). The CFA is the virtual address
that could be leveraged to represent other addresses where callee
saved registers are stored.

• The callee saved registers and the return address. These regis-
ters should be represented at the unwinding site to restore the
previous frame correctly.

ocfi performs data �ow analysis on the original CFI to calculate
the CFA, the callee saved registers and the return address. The
algorithm is shown in algorithm 2. The algorithm is based on the
following assumption:

Given a basic block B, its immediate predecessors are %�1, %�2, ...,
%�= . At the end of these predecessor basic blocks, the represen-
tation of CFA and callee saved registers are the same. That is,
$*) (%�1) = $*) (%�2) = ... = $*) (%�=). Otherwise, the re-
turn address and callee-saved registers could not be determined
correctly when unwinding occurs inside B.

5 IMPLEMENTATION

We implement the prototype of ocfi on LLVM/Clang 12.0. Specif-
ically, to propagate no-unwinding property, we implemented a
pass based on CallGraphSCCPass [23] which iterates functions
on bottom-up orders in strongly connected components of call
graph. We calculate the minimized unwinding range during LLVM
codegen modular [20]. To calculate the proper CFA and registers
of the minimized unwinding range, we reuse the data�ow analysis
in CFIInstrInserter [22] pass. Lastly, we hook the process of
emitting CFI instructions and remove the instructions that out of
the minimized unwinding range in AsmPrinter [21].

6 EVALUATION

6.1 Dataset

We use two dimensions, availability and e�ectiveness, to evaluate
ocfi. Availability refers to whether the obfuscated binaries can still
properly unwind the stack, while e�ectiveness refers to whether the
obfuscated binaries are more challenging for popular disassemblers
to identify functions than the original binaries. To test ocfi from
these two dimensions, we create the following dataset.
Real-world Software. In order to evaluate the availability and
e�ectiveness of ocfi, We build a large scale dataset of real-world
software. The dataset is shown in Table 1. The dataset includes

Algorithm 2: CFA & Registers Calculation

Input :Function 5

Input :CFI instructions of the function 5 :���B
Output :A list of mappings between basic block to CFA and

callee saved registers at the beginning of the basic
block:
®�� = { (��1, 2 5 01, ®A46B1), ..., (��=, 2 5 0=, ®A46B=) }

1 Initialization: ®�� = ∅; E8B8C43 = ∅;(= (C02: () ;

2 (.push((5 .entry_block(), none, ∅))

3 ®�� .push((5 .entry_block(), none, ∅))

4 while ¬(.empty() do

5 �, 2 5 08=8 , ®A46B
8=8

= (.pop()

6 if E8B8C43.contains(�) then

7 continue

8 end

9 E8B8C43.insert(�)

10 2 5 0, ®A46B = 20;2D;0C4_2 5 0_A46B(�, 2 5 08=8 , ®A46B
8=8

)

11 for each �(in �.BD224BB>AB () do
/* The states at the end of the basic block equal the begin

of the succeeding basic block(s) */

12 (.push((�(, 2 5 0, ®A46B))

13 ®�� .push((�(, 2 5 0, ®A46B))

14 end

15 end

16 Procedure calculate_cfa_regs(�, 2 5 0, ®A46B8=8):
/* Iterate over the cfa instruction of the basic block � */

17 for each � in �.���_�=BCAB () do
/* If the instruction modifies cfa value, update it */

18 if � .operate_cfa() then

19 update_cfa_value(2 5 08=8 , �)

20 end

21 if � .operate_regs() then

22 update_regs(A46B8=8 , �)

23 end

24 end

25 return 2 5 0, ®A46B

programs and libraries of diverse functionality and complexity,
written in C/C++. To test the e�ect of di�erent compiler options,
we built the dataset with various compiler optimizations (O0, O2,
O3, Os, Ofast). We built the binaries on two popular architectures
(x64 and aarch64). In summary, the dataset contains 1,440 C binaries
and 3,034 C++ binaries.
Automated Generation Programs. In order to generate pro-
grams that could trigger unwinding progress, we develop Usmith

which could generate C/C++ programs with try/catch statements.
Usmith is built on Csmith [52], which could generate C programs
automatically with prede�ned rules. Csmith maintains a global
environment and a local environment. The global environment
holds global scope de�nitions such as types, global variables and
functions. The local environment holds local information about
the current generation point, including ① the function call chain
information for the current generation point, which is used for
context-sensitive pointer analysis, ② the variables that can be refer-
enced by the current generation point, and ③ the alias relationships
for local variables. Csmith de�nes rules for C/C++ code generation,
supporting function de�nitions, global variables, local variables,

809

OCFI: Make Function Entry Identification Hard Again ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

1 int depth = 0;
2 void func1() {
3 depth++;
4 ... // initialization
5 throw 1;
6 ...
7 depth–-;
8 return;
9 }
10 int main() {
11 depth++;
12 ... // initialization
13 try {
14 func1();
15 } catch(const int e) {
16 printf("Catch the exception, depth is %d!", depth);
17 }
18 depth–-;
19 }

Figure 5: An example of generated binary of usmith. try,

catch, throw, printf, and depth are inserted by usmith

based on Csmith. depth is used to record the depth of calling

stack when throwing an exception.

expressions, common control �ow (if/else, function call,

for, return, break, continue, goto), numeric operations,
and bit operations. To generate a valid C program, Csmith �rst
generates random types such as structure and global variables, and
then de�nes the main function to generate C statements following
top-down generation rules: when a new local variable is de�ned,
the local environment is updated; when a speci�c type of variable is
needed, the appropriate variable is selected from the global or local
environment, and the pointer alias relationship is updated. When
generating the call site of a function, usmith randomly decides
whether or not to wrap a call in a try/catch and inserts printf

statement inside the catch statement. In the body of some func-
tions, usmith inserts throw statement randomly. An example of
the generated binary of usmith is shown in Figure 5.

To validate the correctness of the obfuscated binaries by ocfi,
usmith compiles the generated C++ program into a normal binary
and an obfuscated binary, respectively, and compares the outputs
between the two binaries with di�erential testing. If the outputs
are same, we could conclude that the obfuscated binary could catch
the threw exception correctly.

6.2 Availability

To test the availability of the obfuscated binaries by ocfi, we per-
formed evaluations on both real-world software and automated
generation programs dataset.
Real-world Software. We summarize the real-world software
into two categories: ① Spec CPU 2017 and ② C++ applications.
For the C++ programs in Spec CPU 2017, we ran the benchmarks
automatically and compared the outputs between the obfuscated
version and original version. For the C++ applications, we marked
the throw sites from the source code as the targets and ran directed
greybox fuzzing (aflgo [7]) to generate testcases that reach the
throw sites automatically. After 24 hours of running, we collected
the testcases generated by aflgo and ran the inputs again to check
if the outputs are the same between the obfuscated binary and the
original binary.

Table 1: Software used for evaluating tools.

Type Name
Programs/Binaries

C C++
Benchmark SPEC CPU2017 32 / 190 24 / 130

Utilities

Findutils-4.4 Binutils-2.26
Coreutils-8.30 Bloaty-1.1
Cppcheck-2.10 Guetzli
Libjxl-0.8 Lodepng

Matplotlib-cpp Ninja-1.12.0
Poppler-125.0.0 Qpdf-11.0.0

Sentencepiece-0.1.97
Tesseract-5.2.0

Xpdf-4.04 Znc-1.9

242 / 1250 52 / 740

Clients

Alembic-1.8.3 Capnproto-0.11
Grpc-1.49.1 Easywsclient
Mosh-1.3.2.95 Protobuf-c-1

Openbabel-3.11
Openthread-0.0.7
PcapPlusPlus-22.05

Rapidxml-1.13
Spicy-1.5.1 Xerces-c-3.2.4

0 / 0 84 / 950

Servers
Mysql-8.0.20 Oatpp-1.3.0

Opendnp3-3.1.2 Wabt-1.0.30
0 / 0 30 / 480

Libraries

Arrow-1000 libsass-1.0.0
bls-signatures-1.0.16
libyuv libzmq-5.25

Nghttp2-14.24.0 Opencv-4.6.0
Pistache-0.0.5 Pugixml-1.12
Re2-10.0.0 Resiprocate-1.13
Snappy-1.9 Spdlog-1.10.0

Spotify-json-3.1.5 Tinygltf2.0
Tinyobjloader-2.0 Tinyxml2-9

Leveldb-1.23 Zop�i-1.0.3

0 / 0 38 / 734

Total 274 / 1,440 228 / 3,034

To check if the program could throw an exception that would un-
wind the stack, we hooked the cxa_throw and cxa_rethrow func-
tions of standard C++ library. Speci�cally, we wrote a library con-
taining customized cxa_throw and cxa_rethrow which record
the number of throw exceptions during running the testcase and
redirect the execution to the original functions in the standard C++
library. To hook the functions, we set the path of the customized
library to LD_LIBRARY_PATH3.

The real-world dataset we used in the evaluation is shown in Ta-
ble 2. In the evaluation, we ran 19 C++ applications and 10 of them
do not throw exceptions so we omit these applications in table 2. For
the remaining 9 applications, there are 4,973 testcases during run-
ning or fuzzing which raise 151,773 exceptions. We did not �nd any
di�erence in immediate outputs between the obfuscated binaries
and the original binaries. This indicates that the obfuscated binaries
could raise the exception correctly for the real-world dataset shown
in Table 2.

3LD_LIBRARY_PATH is an environment that determines where to look for dynamic
shared libraries that an application was linked with.

810

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengbin Pang, Tiantai Zhang, Xuelan Xu, Linzhang Wang, and Bing Mao

0 2 4 6 8 10 12 14 16
Depths

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
en
si
ty

mean
median

Figure 6: The distributions of stack depths of programs gen-

erated by usmith.

Table 2: Applications used in our evaluation. ✓ indicates the

immediate outputs of obfuscated binaries are same as the

original binaries. Column throws indicates the number of

exceptions thrown when running.

Applications AFL Settings Results

Name Category throws Seeds Options

omnetpp_r CPU 2017 10 — — ✓

omnetpp_s CPU 2017 10 — — ✓

leela_r CPU 2017 10 — — ✓

leela_s CPU 2017 10 — — ✓

parest_r CPU 2017 139,990 — — ✓

povray_r CPU 2017 20 — — ✓

bloaty Utilities 1,058 [15] bloaty @@ ✓

qpdf Utilities 10,599 [29] qpdf @@ /dev/null ✓

xerces-c Clients 66 [30] EnumVal @@ ✓

Automated Generation Programs.We ran usmith to generate
C++ programs that contains try/catch statements automatically
for 605 hours. In summary, we generated 22,323,187 C++ programs
that raised 22,323,187 exceptions. To validate that the obfuscated
binary could raise the exception correctly at di�erent stack depths,
we record the stack depths when raising an exception. Speci�cally,
we declare a global integer variable depth and increment the vari-
able when entering a function and decrement the variable when
leaving a function. The distributions of stack depths are shown in
Figure 6. The mean value of the stack depths is 2 and the median
value of the stack depths is 1. Moreover, the max value of the stack
depths is 16. It shows that the obfuscated binaries by ocfi could
catch the exception properly under di�erent stack depths.

6.3 E�ectiveness

To test the e�ectiveness of ocfi, we evaluated the popular disas-

semblers’ precision (?A428B8>= =

|)% |
|)% |+|�% |

,)% and �% stand for

true positives and false positives) and recall (A420;; = |)% |
|)% |+|�# |

,

Table 3: The group of disassemblers that are used in the

evaluation.

Tool Version Source (Release Date)

Ghidra 10.2 Website [1] (Nov 3, 2022)
angr 9.2.15 Github [50] (Aug 24, 2022)
fetch 1.0 Github [53] (Mar 29, 2021)

O0 O2 O3 Ofast Os

Precision

0

5

10

15

20

25

30

X64
AArch64

O0 O2 O3 Ofast Os

Recall

0

5

10

15

20

25

30

X64
AArch64

Figure 7: Comparation results between obfuscated call frame

information generated by ocfi with symbol information.

O0 O2 O3 Ofast Os

Precision

20

30

40

50

60

70

80

90

100

Ghidra-Orig
Angr-Orig
FETCH-Orig

Ghidra-OCFI
Angr-OCFI
FETCH-OCFI

O0 O2 O3 Ofast Os

Recall

50

60

70

80

90

100

Ghidra-Orig
Angr-Orig
FETCH-Orig

Ghidra-OCFI
Angr-OCFI
FETCH-OCFI

(a) X86

O0 O2 O3 Ofast Os

Precision

20

30

40

50

60

70

80

90

100

Ghidra-Orig
Angr-Orig

Ghidra-OCFI
Angr-OCFI

O0 O2 O3 Ofast Os

Recall

40

50

60

70

80

90

100

Ghidra-Orig
Angr-Orig

Ghidra-OCFI
Angr-OCFI

(b) AArch64

Figure 8: Evaluation results of function detection of popular

disassemblers on the original binaries (with the su�x Orig)

and the obfuscated binaries by ocfi (with the su�x OCFI).

�# stands for false negatives) on function detection by comparing
original binaries and obfuscated binaries by ocfi. The dataset is
shown in Table 1. The disassemblers we used in the evaluation are
shown in Table 3. We extract ground truth of function entries from
symbol information.

811

OCFI: Make Function Entry Identification Hard Again ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 4: Evaluation results of binary size (KB) and size overhead of obfuscated binaries compared with the original binaries (Orig

in the table). INC represents the incremented rate compared between the obfuscated and original binaries (INC =
OCFI−Orig

Orig
∗100%).

Avg indicates the average value of the above rows.

OPT

X64 AArch64

C C++ C C++

Orig OCFI INC Orig OCFI INC Orig OCFI INC Orig OCFI INC

O0 378.42 378.22 -0.05 1659.02 1679.95 1.26 349.08 345.46 -1.04 1937.60 1927.52 -0.52

O2 270.50 265.56 -1.83 1177.58 1204.87 2.32 254.84 254.34 -0.19 1458.71 1654.65 13.43

O3 284.28 278.75 -1.94 1203.09 1261.29 4.84 263.34 265.52 0.83 1445.53 1682.74 16.41

Os 233.17 228.03 -2.20 1022.05 1050.91 2.82 234.23 233.73 -0.21 1346.77 1458.65 8.31

Of 285.89 280.19 -1.99 1203.99 1255.27 4.26 267.56 267.01 -0.21 1447.89 1683.06 16.24

Avg 290.45 286.15 -1.48 1253.15 1290.51 2.98 273.81 273.21 -0.22 1525.57 1681.32 10.21

We �rst compared the obfuscated call frame information gener-
ated by ocfi with the corresponding symbol information directly.
The results of this comparison are presented in Figure 7. We could
conclude that ocfi e�ectively obfuscates the majority of function
entries in the call frame information from the results (83.94% in
X64 and 79.20% in AArch64). We checked the functions that could
not be obfuscated by ocfi and summarized them into the follow-
ing categories: ① The functions that are statically linked in the
executable �le. As these functions are not compiled by ocfi, we
could not obfuscate them. However, if we compile all the related
libraries by ocfi, we could obfuscate them. ② The functions whose
�rst instruction may unwind the stack. For these functions, ocfi
would mark the start of the CFI at function start. However, if we
leverage accurate alias analysis (such as SVF [46]) to analyze the
targets of indirect calls, we could eliminate the assumption about
all of the indirect calls may unwind the stack. These functions could
be reduced accordingly.

In Figure 8, we conducted an evaluation of popular disassem-
blers’ function detection capabilities on both the original binaries
and the obfuscated binaries generated by OCFI. The evaluation
results demonstrate that ocfi e�ectively enhances the di�culty
of disassemblers in detecting function entries. More speci�c, The
precision and recall of Ghidra (Precision: 98.40%→ 51.75%, Recall:
98.44%→ 83.45%), angr (Precision: 97.99%→ 51.34% ,Recall: 98.66%
→ 73.88%), and fetch (Precision: 99.99% → 53.05%, Recall: 98.26%
→ 70.19%) reduce largely on x64 and AArch64.

6.4 Size Overhead

The eh_frame section is loaded to the address space of a program
when loading and it could not be stripped. We evaluated the size
overhead of obfuscated binaries in Table 4.

In summary, the average size overhead of the obfuscated bina-
ries is 4%. Speci�cally, the size of C obfuscated binaries is slightly
smaller than the original binaries (x64: -1.48%, AArch64: -0.22%).
We found that most functions of C do not unwind the stack and
ocfi removes some of the call frame instructions randomly. The
size of C++ obfuscated binaries is slightly larger than the original
binaries (x64: 2.98%, AArch64: 10.21%). We found that some of the

Table 5: Runtime overhead under Spec CPU2017 benchmarks.

Columns Orig and OCFI list the running time (seconds) of

original binaries and obfuscated binaries. INC represents the

incremented rate compared between the obfuscated and origi-

nal binaries (INC =
OCFI−Orig

Orig
∗100%). Avg indicates the average

value of the above rows.

Program C/C++
X64 AArch64 (QEMU)

Orig OCFI INC Orig OCFI INC

500.perlbench_r C 248.1 247.2 -0.4 1728.2 1730.9 0.2

502.gcc_r C 181.4 180.8 -0.3 977.4 977.8 0.0

505.mcf_r C 247.8 248.1 0.1 875.8 872.8 -0.3

520.omnetpp_r C++ 330.2 333.5 1.0 1244.3 1259.7 1.2

523.xalancbmk_r C++ 252.5 252.2 -0.1 1033.2 1054.7 2.1

525.x264_r C 195.9 197.6 0.9 1510.8 1508.4 -0.2

531.deepsjeng_r C++ 211.9 211.0 -0.4 1072.2 1078.0 0.5

541.leela_r C++ 346.7 349.2 0.7 1722.3 1719.5 -0.2

557.xz_r C 276.9 278.6 0.6 862.0 862.8 0.1

508.namd_r C++ 192.4 192.5 0.1 4045.3 4017.6 -0.7

510.parest_r C++ 349.9 350.3 0.1 4343.9 4316.6 -0.6

511.povray_r C, C++ 297.9 295.0 -1.0 5140.4 5133.3 -0.1

519.lbm_r C 176.7 176.8 0.1 3237.8 3289.7 1.6

526.blender_r C, C++ 222.9 222.8 -0.1 2699.8 2713.5 0.5

538.imagick_r C 345.5 346.8 0.4 7473.0 7515.3 0.6

544.nab_r C 262.1 262.9 0.3 5891.1 5902.3 0.2

Avg — 258.7 259.1 0.1 2741.1 2747.1 0.3

obfuscated C++ functions have many initialization sites for the
states of registers, which would increase the size of .eh_frame.

6.5 Runtime Overhead

To test the runtime overhead, we compiled the Spec CPU2017 with
O2 optimization level and run the obfuscated and original binaries.
The machine we used for the evaluation is Intel i7-10700K CPU
3.80 GHz, Ubuntu 20.04. For AArch64, we evaluate under Qemu

812

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengbin Pang, Tiantai Zhang, Xuelan Xu, Linzhang Wang, and Bing Mao

Table 6: Distributions of function entries identi�cation.

eh_frame indicates that the function entries are correctly

marked in the .eh_frame, call indicates the functions are

recognized by direct call and matching indicates the functions

are found by function pattern matching.

eh_frame matching call

Ghidra 21.86% 17.56% 60.58%

angr 25.84% 9.42% 64.74%

emulation. Speci�cally, we ran the evaluations 5 times and �ltered
the largest and smallest value and calculated the average value
of the remaining values. The results are shown in Table 5. The
results show that ocfi incurs nearly zero runtime overhead (0.2%
on average) compared to the original binaries.

7 DISCUSSION

In this section, we discuss the limitations and future directions of
our research.

7.1 Threats of Validity

In this study, we have concentrated on obfuscating CFI with the
aim of misleading the function detection results of popular disas-
semblers. Disassemblers may leverage data�ow analysis to detect
the existence of obfuscated CFI. For example, FETCH [34] checks
the validity of calling conventions before marking function entries
from .eh_frame. However, our experiments show that the preci-
sion of FETCH on x64 platform is only 53.05% (shown in Figure 8a).
This indicates that this approach is not easily scalable enough to
detect obfuscated CFI.

Additionally, our study, as well as that of Pang et al. [33], has
discovered that some disassemblers (e.g., Ghidra and angr) per-
form poorly without CFI, which suggests that ocfi can also be used
to prevent disassemblers from identifying function entries with the
aid of the CFI section and can increase the di�culty of detecting
function entries.

By the way, there are some possibilities to deobfuscate ocfi.
One possible deobfuscation is searching function prelude patterns
among the gaps left by the ranges of CFI that Ghidra and angr al-
ready leverage this strategy. There are three sources used to identify
function entries of Ghidra and angr: ① the .eh_frame, ② direct
calls, and ③ function pattern matching. We show the distributions
of these three sources on truly identi�ed functions recognized by
Ghidra and angr on the ocfi obfuscated binaries in Table 6. The
results show that the function pattern matching among the gaps
left by the ranges of CFI only recovers few function entries.

7.2 Future Works

While ocfi conservatively assumes that the targets of indirect calls
unwind the stack, it may generate false negatives when propagating
the “nounwind" attribute. To address this issue, we plan to use
precise alias analysis of pointers to determine the targets of indirect
calls in future work.

ocfi marks the beginning of the minimized unwinding range at
the start of a speci�c basic block, which gives a clue about identify-
ing correct instructions. As shown in Table 6, direct calls contribute
signi�cantly to the majority of identi�ed function entries. In the
future, we plan to mark the beginning of the minimized unwinding
range at the address of some incorrect instructions, which could
potentially mislead disassemblers into identifying the wrong direct
call instructions.

8 RELATED WORKS

Obfuscating binaries. Software obfuscation aims to make pro-
grams harder to understand or analyze, without impacting ex-
pected functionality. Over the years, various obfuscation meth-
ods [9, 10, 18, 19, 51, 54] were proposed, and combinations of these
techniques [42, 43] were also been extensively studied for more
e�ective confusion. The most related category to our work is static
code rewriting, including data obfuscation and control �ow obfusca-
tion. Data obfuscation such as Mixed Boolean Arithmetic [42, 54] is
suitable for limited scenarios because of the unbearable overhead in
binary transformation or encrypt. The need of the target determines
the obfuscation level since high obfuscation increases cost [16].
Thus we propose a novel way based on the mechanism of stack un-
winding to �t that speci�c target well. Control �ow obfuscation is a
popular way to stop higher-level abstractions recovery from assem-
bly, including bogus insertion [10], opaque predicates [10, 51, 55],
and control �ow �attening [9, 19]. Balachandran et al. [4] removes
code blocks randomly to a new code segment with order-preserving
by jump instruction in order to disturb control �ow. ROPOB [31]
conceals control �ow between CFG basic blocks utilizing Return
Oriented Programming (ROP). Schrittwieser et al. [43] splits assem-
bly code into small pieces and combines them by branching func-
tion, and it also inserts dummy code to improve strength. However,
these works also show obvious costs due to program complexity
increasing, instruction modi�cation, code instrumentation, etc. For
instance, [4] brings 1.25x average time overhead while the �le size
obfuscated with ROPOB [31] expands to 2.66x in average. What’s
more, there’s no obfuscation on CFI since all studies mentioned
above focus on control �ow and work on assembly code level, in-
cluding ROPOB which takes binary code as input. In other words,
our work is complementary to control �ow obfuscations.

The key to proof availability of obfuscation is how to de�nite
"functionally equivalent", since living with the cost (e.g., program
size or time) is a consensus. Collberg et al. [10] considers the re-
lationship between the original and the obfuscated program to be
"weakly equivalent", with only one requirement that the observ-
able behavior (the behavior experienced by the user) of the two
programs should be the same. Similarly, the de�nition of "harder
to understand and analyze" is under discussion. Some compiler
optimizations are also considered obfuscation, because code that
improves performance may do the opposite in understanding [5],
which a�ects disassembly subtly.
Call Frame Information. The speci�cations [11, 27] de�ne that
each function should have CFI for stack unwinding and excep-
tion handling, which gives reverse engineering a chance. Oak-
ley et al. [32] hides malicious instructions in DWARF-format CFI
to gain the control �ow of execution. Duta et al. [12] leverages

813

OCFI: Make Function Entry Identification Hard Again ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

corrupted stack unwinding path to hijack control �ow. Some re-
searches [34, 36] note the role of .eh_frame in function identi�ca-
tion. While mainstream binary analysis tools [1, 2] also use CFI to
detect function starts. Priyadarshan et al. [36, 37] points out that
when .eh_frame exists, code randomization which aims to resist
code reuse attacks shows a decline in performance. They propose
mitigation that randomizes call-containing and nearby unwinding
information. However, they assume the attacker is experienced and
skilled, which is very di�erent from �ghting against disassembly
in minimal time and space overhead.

9 CONCLUSION

We introduce ocfi, a prototype for obfuscating CFI tomake it harder
for popular disassemblers to detect function entries. The main idea
behind ocfi is that not every function or instruction unwinds the
stack at runtime. First, ocfi propagates the nounwind attributes of
known functions to other functions and determines the minimized
unwinding range of unwinding stacks. Then, ocfi marks the range
of CFI as the minimized unwinding range. To evaluate ocfi, we
built a large-scale dataset consisting of real-world software and
automated generation programs. Our evaluations show that the
obfuscated binaries generated by ocfi are more di�cult for popular
disassemblers to detect function entries. Additionally, ocfi incurs
acceptable size overhead (4% on average) and runtime overhead
(0.2% on average).

ACKNOWLEDGMENTS

We would thank the anonymous reviewers for their feedback. This
work was supported, in part, by grants from the Chinese National
Key R&D Program (2022YFF0604503) and the Chinese National
Natural Science Foundation (62032010, 62172201). Any opinions,
�ndings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily re�ect the
views of the funding agency.

REFERENCES
[1] National Security Agency. 2019. Ghidra Software Reverse Engineering Framework.

https://ghidra-sre.org/ Accessed Dec 2, 2022.
[2] National Security Agency. 2022. Angr: A powerful and user-friendly binary analysis

platform! https://github.com/angr/angr Accessed Dec 2, 2022.
[3] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-agnostic

function detection in binaries. In 2017 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 177–189. https://doi.org/10.1109/EuroSP.2017.11

[4] Vivek Balachandran and Sabu Emmanuel. 2013. Software protection with ob-
fuscation and encryption. In Information Security Practice and Experience: 9th
International Conference, ISPEC 2013, Lanzhou, China, May 12-14, 2013. Proceedings
9. Springer, 309–320. https://doi.org/10.1007/978-3-642-38033-4_22

[5] Sebastian Banescu and Alexander Pretschner. 2018. A tutorial on software
obfuscation. Advances in Computers 108 (2018), 283–353. https://doi.org/10.1016/
bs.adcom.2017.09.004

[6] Ti�any Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. {BYTEWEIGHT}: Learning to recognize functions in binary code. In 23rd
USENIX Security Symposium (USENIX Security 14). 845–860.

[7] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security. 2329–2344. https://doi.org/10.1145/
3133956.3134020

[8] Nicholas Carlini and David Wagner. 2014. {ROP} is still dangerous: Breaking
modern defenses. In 23rd USENIX Security Symposium (USENIX Security 14).
385–399.

[9] Stanley Chow, Yuan Gu, Harold Johnson, and Vladimir A Zakharov. 2001. An
approach to the obfuscation of control-�ow of sequential computer programs. In
Information Security: 4th International Conference, ISC 2001 Malaga, Spain, October

1–3, 2001 Proceedings 4. Springer, 144–155. https://doi.org/10.1007/3-540-45439-
X_10

[10] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of
obfuscating transformations. Technical Report. Department of Computer Science,
The University of Auckland, New Zealand.

[11] Arm Developer. 2022. DWARF for the Arm® 64-bit Architecture (AArch64). https://
github.com/ARM-software/abi-aa/blob/main/aadwarf64/aadwarf64.rst Accessed
Dec 10, 2022.

[12] Victor Duta, Fabian Freyer, Fabio Pagani, Marius Muench, and Cristiano Giu�rida.
2023. Let Me Unwind That For You: Exceptions to Backward-Edge Protection. In
NDSS.

[13] GCC GNU. 2022. Declaring Attributes of Functions. https://gcc.gnu.org/
onlinedocs/gcc-4.7.2/gcc/Function-Attributes.html Accessed Dec 10, 2022.

[14] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out of control: Overcoming control-�ow integrity. In 2014 IEEE Symposium on
Security and Privacy. IEEE, 575–589.

[15] Joshua Haberman. 2017. Testcases of ELF. https://github.com/google/bloaty/tree/
main/tests/testdata/linux-x86_64

[16] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti Mäkelä, Jo-
hannes Holvitie, Sami Hyrynsalmi, and Ville Leppänen. 2018. Diversi�ca-
tion and obfuscation techniques for software security: A systematic litera-
ture review. Information and Software Technology 104 (2018), 72–93. https:
//doi.org/10.1016/j.infsof.2018.07.007

[17] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness of
non-control data attacks. In 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 969–986. https://doi.org/10.1109/SP.2016.62

[18] Johannes Kinder. 2012. Towards static analysis of virtualization-obfuscated
binaries. In 2012 19th Working Conference on Reverse Engineering. IEEE, 61–70.
https://doi.org/10.1109/WCRE.2012.16

[19] Tımea László and Ákos Kiss. 2009. Obfuscating C++ programs via control �ow
�attening. Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös
Nominatae, Sectio Computatorica 30, 1 (2009), 3–19.

[20] LLVM. 2017. Modular Codegen. https://llvm.org/devmtg/2017-10/slides/Blaikie-
Modular%20Codegen.pdf Accessed Jan 1, 2023.

[21] LLVM. 2020. Source code of AsmPrinter. https://github.com/llvm/llvm-project/
blob/llvmorg-12.0.0/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp Accessed Jan
3, 2023.

[22] LLVM. 2020. Source code of CFIInstrInserter. https://github.com/llvm/llvm-
project/blob/llvmorg-12.0.0/llvm/lib/CodeGen/CFIInstrInserter.cpp Accessed Jan
3, 2023.

[23] LLVM. 2022. llvm::CallGraphSCCPass Class Reference. https://llvm.org/doxygen/
classllvm_1_1CallGraphSCCPass.html Accessed Dec 6, 2022.

[24] LLVM. 2023. llvm::ResumeInst Class Reference. https://llvm.org/doxygen/
classllvm_1_1ResumeInst.html Accessed Jan 5, 2023.

[25] H.j. Lu, David L Kreitzer, Millind Girkar, and Zia Ansari. 2015. System V Appli-
cation Binary Interface, Intel386 Architecture Processor Supplement. https://raw.
githubusercontent.com/wiki/hjl-tools/x86-psABI/intel386-psABI-1.1.pdf Ac-
cessed Dec 2, 2022.

[26] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014.
Semantics-based obfuscation-resilient binary code similarity comparison with
applications to software plagiarism detection. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering. 389–400.
https://doi.org/10.1109/TSE.2017.2655046

[27] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. 2012. System V
Application Binary Interface, AMD64 Architecture Processor Supplement. https:
//refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf Accessed Dec 2, 2022.

[28] Xiaozhu Meng and Barton P Miller. 2016. Binary code is not easy. In Proceedings
of the 25th International Symposium on Software Testing and Analysis. 24–35.
https://doi.org/10.1145/2931037.2931047

[29] Max Moroz. 2019. Testcases of PDF. https://github.com/google/AFL/blob/master/
testcases/others/pdf/small.pdf

[30] Max Moroz. 2019. Testcases of XML. https://github.com/google/AFL/blob/master/
testcases/others/xml/small_document.xml

[31] Dongliang Mu, Jia Guo, Wenbiao Ding, Zhilong Wang, Bing Mao, and Lei Shi.
2018. ROPOB: obfuscating binary code via return oriented programming. In
Security and Privacy in Communication Networks: 13th International Conference,
SecureComm 2017, Niagara Falls, ON, Canada, October 22–25, 2017, Proceedings 13.
Springer, 721–737. https://doi.org/10.1007/978-3-319-78813-5_38

[32] James Oakley. 2011. Exploiting the {Hard-Working}{DWARF}: Trojan and
Exploit Techniques with No Native Executable Code. In 5th USENIX Workshop
on O�ensive Technologies (WOOT 11).

[33] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios Portokalidis,
Bing Mao, and Jun Xu. 2021. SoK: All you ever wanted to know about x86/x64
binary disassembly but were afraid to ask. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 833–851. https://doi.org/10.1109/SP40001.2021.00012

814

https://ghidra-sre.org/
https://github.com/angr/angr
https://doi.org/10.1109/EuroSP.2017.11
https://doi.org/10.1007/978-3-642-38033-4_22
https://doi.org/10.1016/bs.adcom.2017.09.004
https://doi.org/10.1016/bs.adcom.2017.09.004
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1007/3-540-45439-X_10
https://doi.org/10.1007/3-540-45439-X_10
https://github.com/ARM-software/abi-aa/blob/main/aadwarf64/aadwarf64.rst
https://github.com/ARM-software/abi-aa/blob/main/aadwarf64/aadwarf64.rst
https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Function-Attributes.html
https://github.com/google/bloaty/tree/main/tests/testdata/linux-x86_64
https://github.com/google/bloaty/tree/main/tests/testdata/linux-x86_64
https://doi.org/10.1016/j.infsof.2018.07.007
https://doi.org/10.1016/j.infsof.2018.07.007
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1109/WCRE.2012.16
https://llvm.org/devmtg/2017-10/slides/Blaikie-Modular%20Codegen.pdf
https://llvm.org/devmtg/2017-10/slides/Blaikie-Modular%20Codegen.pdf
https://github.com/llvm/llvm-project/blob/llvmorg-12.0.0/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
https://github.com/llvm/llvm-project/blob/llvmorg-12.0.0/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
https://github.com/llvm/llvm-project/blob/llvmorg-12.0.0/llvm/lib/CodeGen/CFIInstrInserter.cpp
https://github.com/llvm/llvm-project/blob/llvmorg-12.0.0/llvm/lib/CodeGen/CFIInstrInserter.cpp
https://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html
https://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html
https://llvm.org/doxygen/classllvm_1_1ResumeInst.html
https://llvm.org/doxygen/classllvm_1_1ResumeInst.html
https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/intel386-psABI-1.1.pdf
https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/intel386-psABI-1.1.pdf
https://doi.org/10.1109/TSE.2017.2655046
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://doi.org/10.1145/2931037.2931047
https://github.com/google/AFL/blob/master/testcases/others/pdf/small.pdf
https://github.com/google/AFL/blob/master/testcases/others/pdf/small.pdf
https://github.com/google/AFL/blob/master/testcases/others/xml/small_document.xml
https://github.com/google/AFL/blob/master/testcases/others/xml/small_document.xml
https://doi.org/10.1007/978-3-319-78813-5_38
https://doi.org/10.1109/SP40001.2021.00012

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengbin Pang, Tiantai Zhang, Xuelan Xu, Linzhang Wang, and Bing Mao

[34] Chengbin Pang, Ruotong Yu, Dongpeng Xu, Eric Koskinen, Georgios Portokalidis,
and Jun Xu. 2021. Towards Optimal Use of Exception Handling Information for
Function Detection. In 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 338–349. https://doi.org/10.1109/
DSN48987.2021.00046

[35] Chengbin Pang, Tiantai Zhang, Ruotong Yu, Bing Mao, and Jun Xu. 2022. Ground
Truth for Binary Disassembly is Not Easy. In 31st USENIX Security Symposium
(USENIX Security 22). 2479–2495.

[36] Soumyakant Priyadarshan, Huan Nguyen, and R Sekar. 2020. On the impact of
exception handling compatibility on binary instrumentation. In Proceedings of the
2020 ACM Workshop on Forming an Ecosystem Around Software Transformation.
23–28. https://doi.org/10.1145/3411502.3418428

[37] Soumyakant Priyadarshan, Huan Nguyen, and R Sekar. 2020. Practical �ne-
grained binary code randomization. In Annual Computer Security Applications
Conference. 401–414. https://doi.org/10.1145/3427228.3427292

[38] LLVM Project. 2022. LLVM Language Reference Manual. https://llvm.org/docs/
LangRef.html Accessed Dec 10, 2022.

[39] Babak Bashari Rad, Maslin Masrom, and Suhaimi Ibrahim. 2012. Camou�age in
malware: from encryption to metamorphism. International Journal of Computer
Science and Network Security 12, 8 (2012), 74–83.

[40] radreorg. 2020. Radare2 Github Repo. https://github.com/radareorg/radare2/tree/
5a1df188

[41] Yutaka Sasaki et al. 2007. The truth of the f-measure. 2007. URL: https://www.
cs. odu. edu/mukka/cs795sum09dm/Lecturenotes/Day3/F-measure-YS-26Oct07. pdf
[accessed 2021-05-26] 49 (2007).

[42] Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Aschermann, Julius
Basler, Thorsten Holz, and Ali Abbasi. 2022. Loki: Hardening code obfuscation
against automated attacks. In 31st USENIX Security Symposium (USENIX Security
22). 3055–3073.

[43] Sebastian Schrittwieser and Stefan Katzenbeisser. 2011. Code obfuscation against
static and dynamic reverse engineering. In Information Hiding: 13th International
Conference, IH 2011, Prague, Czech Republic, May 18-20, 2011, Revised Selected
Papers 13. Springer, 270–284. https://doi.org/10.1007/978-3-642-24178-9_19

[44] Hovav Shacham, E Buchanan, R Roemer, and S Savage. 2008. Return-oriented
programming: Exploits without code injection. Black Hat USA Brie�ngs (August
2008) (2008).

[45] Dwarf std. 2010. DWARF Debugging Information Format, Version 4. https:
//dwarfstd.org/doc/DWARF4.pdf Accessed Dec 6, 2022.

[46] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-�ow analysis in
LLVM. In Proceedings of the 25th international conference on compiler construction.
265–266. https://doi.org/10.1145/2892208.2892235

[47] Rabia Tahir. 2018. A study on malware and malware detection techniques.
International Journal of Education and Management Engineering 8, 2 (2018), 20.
https://doi.org/10.5815/ijeme.2018.02.03

[48] Robert Tarjan. 1972. Depth-�rst search and linear graph algorithms. SIAM journal
on computing 1, 2 (1972), 146–160. https://doi.org/10.1109/SWAT.1971.10

[49] Clang Team. 2022. Attributes in Clang. https://clang.llvm.org/docs/
AttributeReference.html Accessed Dec 10, 2022.

[50] SEFCOM at Arizona State University the Computer Security Lab at UC Santa Bar-
bara. 2022. Angr: A powerful and user-friendly binary analysis platform! https:
//github.com/angr/angr/tree/v9.2.15

[51] Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2016. Generalized dynamic opaque
predicates: A new control �ow obfuscation method. In Information Security:
19th International Conference, ISC 2016, Honolulu, HI, USA, September 3-6, 2016.
Proceedings 19. Springer, 323–342. https://doi.org/10.1007/978-3-319-45871-7_20

[52] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and un-
derstanding bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation. 283–294. https:
//doi.org/10.1145/1993316.1993532

[53] Ruotong Yu. 2022. FETCH: A fast and easy-to-use tool to �nd function entries from
x86/x64 System-V binaries (stripped or not). https://github.com/ruotongyu/FETCH

[54] Yongxin Zhou, Alec Main, Yuan X Gu, and Harold Johnson. 2007. Information
hiding in software with mixed boolean-arithmetic transforms. In Information
Security Applications: 8th International Workshop, WISA 2007, Jeju Island, Korea,
August 27-29, 2007, Revised Selected Papers 8. Springer, 61–75. https://doi.org/10.
1007/978-3-540-77535-5_5

[55] Lukas Zobernig, Steven D Galbraith, and Giovanni Russello. 2019. When are
opaque predicates useful?. In 2019 18th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/13th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE,
168–175.

Received 2023-02-16; accepted 2023-05-03

815

https://doi.org/10.1109/DSN48987.2021.00046
https://doi.org/10.1109/DSN48987.2021.00046
https://doi.org/10.1145/3411502.3418428
https://doi.org/10.1145/3427228.3427292
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://github.com/radareorg/radare2/tree/5a1df188
https://github.com/radareorg/radare2/tree/5a1df188
https://doi.org/10.1007/978-3-642-24178-9_19
https://dwarfstd.org/doc/DWARF4.pdf
https://dwarfstd.org/doc/DWARF4.pdf
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.5815/ijeme.2018.02.03
https://doi.org/10.1109/SWAT.1971.10
https://clang.llvm.org/docs/AttributeReference.html
https://clang.llvm.org/docs/AttributeReference.html
https://github.com/angr/angr/tree/v9.2.15
https://github.com/angr/angr/tree/v9.2.15
https://doi.org/10.1007/978-3-319-45871-7_20
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1145/1993316.1993532
https://github.com/ruotongyu/FETCH
https://doi.org/10.1007/978-3-540-77535-5_5
https://doi.org/10.1007/978-3-540-77535-5_5

	Abstract
	1 Introduction
	2 Technical Background
	2.1 Exception Handling
	2.2 Call Frame Information
	2.3 Attributes Related to Unwinding
	2.4 Is Call Frame Information Necessary for Every Function?
	2.5 Function Entries Identification

	3 Research Scope
	4 Design of ocfi
	4.1 No-unwinding Propagation
	4.2 Minimized Unwinding Range
	4.3 Debloat/Obfuscate Call Frame Information

	5 Implementation
	6 Evaluation
	6.1 Dataset
	6.2 Availability
	6.3 Effectiveness
	6.4 Size Overhead
	6.5 Runtime Overhead

	7 Discussion
	7.1 Threats of Validity
	7.2 Future Works

	8 Related Works
	9 Conclusion
	References

