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ABSTRACT

Web services have brought great convenience to our daily lives.
Meanwhile, they are vulnerable to Denial-of-Service (DoS) attacks.
DoS attacks launched via vulnerabilities in the services can cause
great harm. The vulnerabilities in protocol implementations are
especially important because they are the keystones of web services.
One vulnerable protocol implementation can affect all the web
services built on top of it. Compared to the vulnerabilities that cause
the target service to crash, resource exhaustion vulnerabilities are
equally if not more important. This is because such vulnerabilities
can deplete the system resources, leading to the unavailability of not
only the vulnerable service but also other services running on the
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same machine. Despite the significance of this type of vulnerability,
there has been limited research in this area.

In this paper, we proposeMedusa, a dynamic analysis framework
to detect memory exhaustion vulnerabilities in protocol implemen-
tations, which are the most common type of resource exhaustion
vulnerabilities. Medusa works in two phases: exploration phase
and verification. In the exploration phase, a protocol property graph
(PPG) is constructed to embed the states with relevant properties
including memory consumption information. In the verification
phase, the PPG is used to simulate DoS attacks to verify the vulnera-
bilities. We implemented Medusa and evaluated its performance on
21 implementations of five protocols. The results demonstrate that
Medusa outperforms the state-of-the-art techniques by discovering
overall 127× maximum memory consumption. Lastly, Medusa has
discovered six 0-day vulnerabilities in six protocol implementa-
tions for three protocols. Particularly, one of the vulnerabilities was
found in Eclipse Mosquitto, which can affect thousands of services
and it has been assigned with a CVE ID.

CCS CONCEPTS

• Security and privacy → Software security engineering;
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1 INTRODUCTION

Denial-of-Service (DoS) attacks have emerged as a prevalent form
of attacks against web services in the past two decades [47]. Ac-
cording to [25], DoS attacks can take two forms. The first form
targets to overwhelm the network bandwidth of the target service
with a massive amount of useless traffic, while the second form
exploits vulnerabilities present in the target service. The majority
of existing research has focused on detecting the first form of attack
by monitoring incoming traffic [3, 20, 24, 30, 35, 39]. In contrast,
less attention has been paid to DoS attacks through vulnerabilities.

Although less research effort was devoted to DoS vulnerabili-
ties, they are important subjects for studying. The reason is that
attackers can cause the same or even greater harm with less ef-
fort by exploiting vulnerabilities than by overwhelming a service
with massive traffic. Moreover, DoS vulnerabilities inside proto-
col implementations are of greater concern. This is because every
service relies on certain protocols to communicate and protocol
implementations are the necessary building blocks of web services.
Vulnerabilities in one protocol implementation can affect multiple
services, amplifying their impact. Therefore, we focus on studying
DoS vulnerabilities in protocol implementations 1.

DoS vulnerabilities can be classified into two types [43]: the first
type crashes the target service (e.g., due to memory errors) while
the second type exhausts the resource of the host machine (e.g.,
due to excessive memory consumption). Detecting the crashing
type of vulnerability has been addressed in established research
effort [11, 29, 36–38], while the resource-exhaustion type of vul-
nerability has received less attention. According to our study on
all the protocol-related resource exhaustion DoS CVEs from 2015
to 2022 (205 CVEs in total), 132 (64%) CVEs are related to memory
exhaustion. Therefore, we focus our research on studying memory
exhaustion DoS vulnerabilities.

To mitigate the risk of memory exhaustion vulnerabilities in
protocol implementations, early identification of these issues is
imperative. However, unlike memory errors, memory exhaustion
vulnerabilities do not have distinct code patterns, making them
difficult to detect through static analysis techniques. As a result,
it is necessary to use dynamic analysis techniques to capture the
behavior of excessive memory usage during the execution of the
target protocol program.

Detecting memory exhaustion DoS vulnerabilities in protocol
implementations using dynamic analysis techniques presents a
unique set of challenges. Firstly, in order to identify potential vul-
nerabilities, it is necessary to explore the memory consumption

1In this paper, we use the terms protocol implementation and protocol program inter-
changeably.

of different protocol states. This requires a well-planned strategy
that properly schedules the exploration of different possibilities.
Secondly, excessive memory usage does not always indicate a high
risk of DoS attack. A single message may cause a protocol pro-
gram to consume significant memory, but may not necessarily be
used to launch a DoS attack due to various complex factors such as
protocol-imposed rate limitations on specific types of messages. As
such, further verification is necessary to assess the viability of DoS
attacks. Thirdly, protocols can have multiple implementations in
different programming languages, and memory exhaustion DoS vul-
nerabilities can potentially exist in all kinds of languages. To ensure
generality, programming language-agnostic analysis techniques
are required. However, these techniques limit the information that
can be utilized.

In this paper, we propose a dynamic analysis framework called
Medsua 2, to solve the challenges and unveil memory exhaustion
DoS vulnerabilities in protocol implementations. Medusa com-
prises two phases: exploration and verification. The key object con-
necting the two phases is the protocol property graph (PPG) which
embeds the protocol states and relevant properties such as memory
consumption information. During the exploration phase, Medusa
uses a state-aware fuzzer to build and refine the PPG. In return,
through querying the PPG, the fuzzer can better explore the mem-
ory consumption capability of different states. During the verifi-
cation phase, Medusa generates message sequences by querying
the PPG with restrictions and validates viable DoS attacks with
the message sequences under simulated environments. PPG can
provide guidance to the state-aware fuzzer to substantially explore
potentially vulnerable states, addressing the first challenge. The
PPG-based verification helps to validate potential DoS attacks, ad-
dressing the second challenge. The construction and usage of the
PPG do not require program instrumentation to get internal infor-
mation about the implementation, addressing the third challenge.

We implementedMedusa and evaluated its performance with ex-
tensive experiments. To evaluate the exploration ability of Medusa,
we conducted 17,640 CPU hours of experiments on 21 implementa-
tions of 5 protocols. Compared to the baseline, Medusa can discover
overall 125.7× maximum memory consumption. To evaluate the
verification ability of Medusa, we built the experimental environ-
ment and conducted simulated DoS attacks. The results show that
the DoS attacks with attack inputs generated from Medusa caused
target protocol programs to consume significantly more memory
and result in worse availability. Moreover, during the evaluation,
we discovered six 0-day memory exhaustion DoS vulnerabilities,
one of which has been assigned with a unique CVE ID.

In summary, we make the following contributions:
• Empirical Study. We conducted an empirical study on resource
exhaustion vulnerabilities in protocol implementations, which is
the first in this field.

• Protocol Property Graph. We proposed a protocol property
graph (PPG) based strategy to explore the memory consumption
of different states and verify the DoS vulnerabilities.

• Medusa Framework. We implemented Medusa as a dynamic
analysis framework.

2Medusa is a character in the Geek mythology who can turn those who gazed into her
eyes into stones.
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Figure 1: The distribution of resource exhaustion vulnerabil-

ity types in protocol implementations from 2015 to 2022

• Real-world Impact.We evaluated Medusa with extensive ex-
periments and found six 0-day memory exhaustion DoS vul-
nerabilities in six protocol implementations, which can affect
thousands of web services.
This paper is coupled with a website: https://sites.google.com/

view/medusa-dos.

2 MOTIVATION

2.1 Empirical Study of Resource Exhaustion

Vulnerabilities

To gain a better understanding of resource exhaustion vulnerabili-
ties in protocol implementations, we conducted an empirical study
on the Common Vulnerabilities and Exposure (CVE) [12] database
which contains a set of publicly disclosed security vulnerabilities.
Details of how we collected the data can be found in Appendix A
or on our website [2]. In total, we identified 205 resource exhaus-
tion vulnerabilities in protocol implementations from 2015 to 2022.
Fig. 1 illustrates the distribution of resource exhaustion vulnera-
bility types. Among the 205 resource exhaustion vulnerabilities,
132 (64%) are related to memory, 32 (16%) are related to CPU, 29
(14%) are related to connections and few are related to other types
(disk, thread, file descriptor, and bandwidth). The results indicate
that memory is much more vulnerable to resource exhaustion DoS
attacks compared to other types, which highlights the significance
of studying the detection of memory exhaustion vulnerability.

2.2 Motivating Example

We use CVE-2017-7651 and its regression vulnerability discovered
by Medusa as an example to discuss the motivation behind our
proposed technique. CVE-2017-7651 is a memory exhaustion vul-
nerability in Mosquitto [15], a popular C language implementation
of the MQTT protocol which is used by thousands of types of IoT
devices. Fig. 2 depicts the patch for CVE-2017-7651 (lines 4-6) and
the state transition route to trigger a new memory exhaustion vul-
nerability. The root cause of the original vulnerability was that
the length of the payload requested by unauthenticated users was
not checked during the connection phase (starting from line 3) of
the MQTT protocol. As shown in the PoC Pseudocode [8], the re-
porter of CVE-2017-7651 conducted simulated DoS attacks using
the CONNECT commands with large payloads, causing Mosquitto
program to exhaust its memory and killed by the system. To fix
CVE-2017-7651, a length restriction on the CONNECT command was
applied (line 4 in the patch). The developers’ intuition behind this

1  switch (mosq->in_packet.command & 0xF0) {
2
3    case CONNECT:
4      if (mosq->in_packet.remaining_length > 327699) {
5        return MOSQ_ERR_PROTOCOL;
6      }
7      break;
8 
9      case PUBACK:
10       . . .
11     . . .
12 }

Patch for CVE-2017-7651

INIT

CONNECT

PUBACK

NO RES

...

States & Transitions

New bug
 path

Figure 2: The patch for CVE-2017-7651 and a new state tran-

sition route discovered by Medusa to trigger a new memory

exhaustion vulnerability.

fixing strategy is that CONNECT command is the only dangerous
command that can be manipulated by unauthorized attackers to
conduct memory exhaustion DoS attacks. In other words, subse-
quent states (in the dashed box) can only work after the CONNECT
command is passed with authorization. Attackers without compro-
mising the CONNECT command cannot further exploit vulnerabilities
in subsequent states.

Despite the previous attempt of fixing the vulnerability, Medusa
finds another transition route from initial state to no-response
state (as indicated by the red arrow line in Fig. 2) that can result
in huge memory consumption. Since this transition does not need
to pass through the connect state, we identify it as a new vulnera-
bility. Further analysis revealed that this vulnerability is caused by
the wrong order of memory allocations. Specifically, when sending
a valid MQTT command excluding CONNECT(such as SUBSCRIBE)
with a large payload, Mosquittowill allocate memory for the entire
packet before rejecting it, thereby enabling the attacker to exhaust
Mosquitto’s memory. We promptly reported this vulnerability to
the textttMosquitto team, who quickly confirmed it and assigned it
with CVE-2023-0809. The Mosquitto team assigned this vulnera-
bility a high (7.5) CVSS score [17] and recognized its DoS threat.

From the example in Fig. 2, we summarize four requirements for
detecting memory exhaustion vulnerabilities in protocol implemen-
tations. RequirementI: exploring the memory consumption of

different protocol states.Without awareness of the state transi-
tion and related memory consumption, it is impossible to effectively
identify the vulnerable memory consumption on the state transition
from the initial state to the no-response state, which is crucial
in revealing the vulnerability. RequirementII: using simulated

DoS attacks to verify vulnerabilities. Almost all the cases in
our empirical study, including the motivating example, are veri-
fied by sending multiple attack packets simultaneously to replicate
the real-world attacks. RequirementIII: generality on various

programming languages. Unlike memory corruption vulnerabili-
ties that mainly exist in memory-unsafe languages such as C/C++,
memory exhaustion vulnerabilities exist in almost all programming
languages. Therefore, a promising detection technique should be
program language agnostic. RequirementIV: optimizing for ex-

ploringmemory consumption. To explorememory consumption
efficiently, some optimizations (how to select and mutate inputs
to explore more memory consumption) need to be taken into con-
sideration. Especially for protocol implementations whose inputs
are sequences of messages, we can decide how to select and mutate
these messages according to the memory consumption caused by
each single message.
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Table 1: Satisfactory status of the four requirements for de-

tecting the memory exhaustion DoS in protocol implemen-

tations.

RequirementI

(Ability)

RequirementII

(Verifiability)

RequirementIII

(Generality)

RequirementIV

(Optimization)

MemLock @✓ ✗ ✗ ✗

AFLNet @✓ ✗ ✓ ✗

Medusa ✓ ✓ ✓ ✓

Existing dynamic analysis techniques do not satisfy all of the
above requirements. The most related techniques to Medusa are
algorithmic complexity and protocol fuzzing. Algorithmic com-
plexity fuzzing attempts to find the worst-case resource usage of
the entire program, MemLock [42] is a represent tool for testing
memory resource usage. Protocol fuzzing aims at fuzzing proto-
col, AFLNet [37] is a represent tool as it contains all basic main
components for fuzzing protocol. As shown in Table 1, both Mem-
Lock and AFLNet have limitations in discovering memory exhaus-
tion vulnerabilities in protocol implementations. ➊ MemLock is
not state-aware and targets general stateless programs. AFLNet
is stateful but does not obtain and explore memory consumption.
Without knowledge of the memory consumption of protocol states,
we cannot effectively explore the memory consumption of different
states and thus miss the opportunity to find the memory exhaus-
tion vulnerabilities in specific states. Therefore, both MemLock and
AFLNet do not fully meet RequirementI. ➋ Both MemLock
and AFLNet rely on the crashing of programs during the fuzzing
process to identify vulnerabilities. However, memory exhaustion
vulnerabilities may exist even if a single input does not crash the
program. Unfortunately, simulating DoS attack for each input in the
fuzzing process is not feasible as it introduces tremendous overhead,
making MemLock and AFLNet unable to discover these vulnera-
bilities and fail to meet RequirementII. ➌ MemLock needs to
instrument programs to gather memory consumption information,
but this technique only works for C/C++ programs. This limits its
scalability and makes it unable to detect memory exhaustion vulner-
abilities in protocol implementations written in other programming
languages. Thus, MemLock fails tomeet RequirementIII.➍ Both
selection and mutation components in MemLock and AFLNet do
not optimize for exploring memory consumption and thus fail to
meet RequirementIV.

These analyses motivate and inspire the design of Medusa to
meet all four requirements.

3 METHODOLOGY

Medusa introduces protocol property graph (PPG) to describe the
memory consumption behavior of protocol states. Fig. 3 shows
the overview. The overall inputs of Medusa include the protocol
implementation for testing, the initial testing seeds, and some mis-
cellaneous information. The overall outputs of Medusa are the PoC
message sequences that can trigger memory exhaustion DoS of the
target protocol implementation. Medusa works in two phases: ex-
ploration and verification. During the exploration stage, Medusa
attempts to explore different states of the protocol implementation
and measures the memory consumption incurred by each message.
Medusa stores the state transition and memory consumption infor-
mation in the PPG. With the PPG, Medusa can construct sequences

of messages and launch simulated attacks to verify potential vul-
nerabilities in the target protocol implementation.

The exploration phase contains three steps: ❶ Medusa selects a
promising message sequence from the pool as the seed. The mes-
sage sequences are evaluated with the information from the PPG. ❷
Medusa mutates the selected message sequence to create new test
inputs. ❸ Medusa feeds the test inputs to the target protocol imple-
mentation and monitors for runtime performance such as memory
consumption incurred by each message. The verification phase in-
volves two steps: ❹ Medusa builds the attack message sequences
according to certain restrictions (such as user-specified states to
avoid). ❺ With the attack message sequences, Medusa launches
attacks in a configurable simulated environment and reports the
viable DoS attack message sequences.

During the exploration phase, The PPG can guide the state-aware
fuzzer to explore memory consumption of different protocol states,
satisfying RequirementI. ❸ can obtain memory consumption
and protocol states and construct PPG without program instru-
mentation, thus satisfying RequirementIII. ❹❺ leverage PPG to
simulate DoS attacks and validate memory exhaustion vulnerabili-
ties, satisfying RequirementII. ❶❷ are guided by PPG to decide
how to select and mutate inputs, satisfying RequirementIV

3.1 Protocol Property Graph (PPG)

Protocol property graph (PPG) is the key concept of Medusa. The
definition of property graph is as follows:

Definition 1 (PPG). A PPG is a directed,edge-labeled, attributed
graph 𝐺 = (𝑉 , 𝐸, 𝜆, 𝜇) with:

• 𝑉 = 𝑉𝑠𝑡𝑎𝑡𝑒 ∪𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒

• 𝐸 = 𝐸𝑠𝑚 ∪ 𝐸𝑚𝑠

• 𝜆 = 𝜆𝑠𝑚 ∪ 𝜆𝑚𝑠

• 𝜇 = 𝜇𝑠𝑡𝑎𝑡𝑒 ∪ 𝜇𝑚𝑒𝑠𝑠𝑎𝑔𝑒

where𝑉𝑠𝑡𝑎𝑡𝑒 is a set of state nodes,𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒 is a set of message nodes,
𝐸𝑠𝑚 is a set of directed edges pointing from a node in𝑉𝑠𝑡𝑎𝑡𝑒 to a node
in 𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒 , 𝐸𝑚𝑠 is a set of directed edges pointing from a node in
𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒 to a node in𝑉𝑠𝑡𝑎𝑡𝑒 , 𝜆𝑠𝑚 is a set of labeling functions to label
edges in 𝐸𝑠𝑚 , 𝜆𝑚𝑠 is a set of labeling functions to label edges in 𝐸𝑚𝑠 ,
𝜇𝑠𝑡𝑎𝑡𝑒 is a set of functions to assign properties to nodes in 𝑉𝑠𝑡𝑎𝑡𝑒 , and
𝜇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 is a set of functions to assign properties to nodes in𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒

Fig. 4 shows an example PPG for the protocol implementation of
the motivating example in Fig. 2. The PPG contains all the informa-
tion used by the exploration phase and required by the verification
phase. Medusa can use queries similar to the Cypher Query Lan-
guage [33] to interact with PPG. The queries used by Medusa are
made up of the following four clauses:

MATCH The MATCH clause is the most common clause used by almost
every query except for those which create new nodes. It is
used for finding a set of nodes and edges matching a given
graph pattern in the PPG.

WHERE The WHERE clause is used to add constraints to the pattern
used by MATCH.

CREATE The CREATE clause is used to create new nodes or edges.
SET The SET clause is used for creating or updating the properties

of nodes and edges.
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from

id : "CONNECT"

Figure 4: PPG for the motivating example

3.2 Exploration

During the exploration phase, Medusa updates the PPG according
to the feedback from the Runtime Monitor and reads the informa-
tion from the PPG for decision-making of the Seed Selector.

3.2.1 Runtime Monitor.
The task of the Runtime Monitor is to construct and update the
PPG during the execution of each test input. The process is shown
in Fig. 5. Every test input is a sequence of request messages, which
are sent to the target protocol implementation in order. ❶ First,
Medusa starts building the PPG with an initial state (denoted as S0
in Fig. 5). This is achieved with the following query:

CREATE (x:State, {id: S0})
where x is the variable name, which can be used for further process-
ing (but no use in this query); the parenthesis () indicates that the
object is a node; Statemeans that this node is from𝑉𝑠𝑡𝑎𝑡𝑒 ; {id:S0}
shows the properties of the node. ❷ After that, Medusa sends the
first message of the test input to the target protocol implementation
and waits for the response. ❸ Upon receiving the response, Medusa
will identify the state of the protocol based on the response content
and the user-provided specification. The identification of states in
Medusa is very similar to how it is done in AFLNet [37]. If a new
state is identified, Medusa will use the same query as how it creates
S0 to create a new node for the state. Meanwhile, it will also create
a new message node with the following query:
CREATE (x:Message, {id: M1, content: ...}, memory: 0KB,

select_num: 0, update_num: 0, score: 0)
where Message indicates that the node belongs to𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ; content
is the raw content (raw bytes) of the message; memory is the amount
of memory consumption incurred by the message and the default
unit is KB; select_num is how many times the message has been
selected for mutation to generate new test inputs; update_num is

Medusa

Memory
Consumption

... ...

Test Input

S0

S1

SN

Message 1

Message 2

Response 1

1

Target Protocol
Implementation

2

3

4

Response N

...

Figure 5: Runtime Monitor workflow

how many times the memory property has been updated for this
message node; score is used to describe how good the message is to
serve as the seed for generating new test inputs, which is calculated
based on the previous three properties (Section 3.2.2). Last but not
least, Medusa will create the edges connecting the new messages
and states. Assume the states are S0 and S1, and the message is M1,
the query to create the new edges is:

MATCH (s0:State), (s1:State), (m1:Message)
WHERE s0.id = ‘S0’ AND s1.id = ‘S1’ AND m1.id = ‘M1’
CREATE (s0)-[r1:FROM]->(m1), (m1)-[r2:TO]->(s1)

where the symbol (a)-[b]->(c) represents an edge b pointing from
node a to node c; r1 belongs to 𝐸𝑠𝑚 and r2 belongs to 𝐸𝑚𝑠 . ❹ Apart
from creating new nodes and edges, Medusa also checks the mem-
ory consumption of the target protocol implementation incurred
by the newly sent message. To get the memory consumption infor-
mation, Medusa accesses Linux’s /𝑝𝑟𝑜𝑐 Filesystem [9] which can
monitor resources at the system level without program instrumen-
tation. If the message node is newly created or the message can
cause greater memory consumption, Medusa will set the memory
property of the message. Assume the message has an id of M1 and
its incurred memory consumption is 5KB, Medusa will use the
following query to update the relevant information:

MATCH (m1:Message) WHERE m1.id = ‘M1’
SET m1.memory = ‘5KB’, m1.update_num = m1.update_num + 1

, m1.score=Score(m1)
where Score(m1) is used to calculate the evaluation score of m1,
which will be explained in Section 3.2.2. Besides, if the message
is not a new message and it incurs more memory consumption,
Medusa will also update the content property to replace the con-
tent of the old message with the content of the new one inside the
SET clause.
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3.2.2 Seed Selector.
Medusa maintains a pool of seed test inputs and it generates new
test inputs by mutating the seed inputs. This helps Medusa to grad-
ually generate better and better test inputs. Given a large number
of seed inputs, it is important to decide which inputs should be pri-
oritized. Choosing the messages with high memory consumption
can help to generate test inputs with high memory consumption.
However, always selecting messages with high memory consump-
tion can end up in the local optimum. Therefore in Medusa, given a
message m, three factors are used to evaluate its potential to bring
in better test inputs:

(1) Memory consumption𝑀𝐶 (𝑚). This factor indicates the max
memory consumption on the state transition. It is intuitive
that mutating a message with high𝑀𝐶 (𝑚) leads to a higher
likelihood of discovering larger memory consumption.

(2) Update number 𝑈𝑁 (𝑚). This factor indicates how many
times the memory consumption property of m has been
updated. The rationale is that if the memory consumption of
m is updated frequently, mutating m is more likely to yield
better results.

(3) Select number 𝑆𝑁 (𝑚). This factor indicates how many times
the message has been selected for mutation. If a message has
already been selected many times, we should avoid using it
too much in order to avoid starving other seeds.

With these three factors, the score for evaluating the potential
benefit of mutating a message m is calculated with equation 1 as
follows:

𝑆𝑐𝑜𝑟𝑒 (𝑚) = ln𝑀𝐶 (𝑚) · ln𝑈𝑁 (𝑚)
𝑆𝑁 (𝑚) + 1

(1)

Note that as discussed in Section 3.2.1, every time the memory prop-
erty is updated, the score property is also updated. Moreover, every
time a message is selected for mutation, its selected_num property
is increased by 1. With the scores calculated, Medusa selects the
message with the highest value of the score property and use it to
generate new test inputs with the following query:

MATCH (m: Message)
RETURN m ORDER BY m.score DESC LIMIT 1

3.2.3 Message Mutator.
After selecting the message to mutate, Medusa takes out the corre-
sponding message sequence from the test input pool and locates
the exact message. Medusa then mutates on the located message
to produce a new test input to execute. Besides the classic mutation
operators (e.g. bit flip) used in general fuzzing [29], protocol fuzzing
has a special mutation operators type called message-level muta-
tion. Message-level mutation mutate a seed at message granularity,
in Medusa, there are three message-level operators: 1) Replace.
Replace the current message with a message from another seed.
2) Insert_begin. Insert a message from another at the begin of the
current message. 3) Insert_end. Insert a message from another seed
at the end of the current message.

All three operators need to choose a message from another seed
to replace or insert. Benefit from runtime monitor described in
Section 3.2.1, Medusa can get triggered resource consumption
of each message in the seeds. The messages which trigger more
resource consumption will get higher probability to be chosen by
message mutator.

3.3 Verification

3.3.1 Message Sequence Builder.
During the verification phase, Medusa will first generate message
sequences suitable for launching DoS attacks. The generation of
the message sequences can be configured according to user require-
ments. By default, Medusa will prefer the message with the largest
memory consumption. It will use the corresponding message node
as the starting point, find all the paths to the initial state node on the
PPG, and use the messages on whichever path consumes the most
memory as the message sequence for launching attacks. Medusa
also allows users to add additional properties to the state nodes so
that when building the message sequences, the graph traversal can
avoid the states with the user-specified properties. The query to
rule out the messages on the subgraph of the paths is:

MATCH
(s1:State)-[r1:FROM]->(m:Message)-[r2:TO]->(s2:State)

WHERE NOT HAS(s1.user_property) AND NOT
HAS(s2.user_property)

RETURN m
where user_property is the user-specified property. For example,
in the motivating example (Section 2.2), the user can rule out the
Connect state in this way.

3.3.2 Attack Simulator.
Attack simulator validates whether the attack inputs generated
from the message builder can cause the DoS of test programs. The
simulating process is as following steps: 1) Setting up an experi-
mental DoS environment with the test program running in it. 2)
Creating "attackers" to send selected attack inputs to the test pro-
gram. 3) Monitoring the status of the test program under attack.
There are several parameters that can be configurable for the attack
simulating process: ➊ system memory limitation, this parameter
decides the maximum memory of the experimental environment.
➋ monitoring duration, this parameter decides the total time of
conducting the simulation. ➌ attack time, this parameter decides
the time to start attacking after the environment has been set up.
➍ attack intensity, this parameter decides how many attack
inputs sending to the test program every second.

4 IMPLEMENTATION & EVALUATION

The implementation of Medusa is comprised of three main parts:
a state-aware fuzzer for the exploration phase, a PPG, and an at-
tack simulator for verification. The state-aware fuzzer is built upon
AFLNet [37]; PPG is implemented using graphviz [22]; the attack
simulator is implemented with Python 3.8.14. Further implementa-
tion details can be found in Appendix B or on our website [2]

In the evaluation, we aim to answer the following research ques-
tions with experiments:
RQ1: How well does Medusa perform in profiling the memory
consumption during the exploration phase?
RQ2: How well does Medusa perform in simulating DoS attacks
during the verification phase?
RQ3: Can Medusa discover previously unknown memory exhaus-
tion DoS vulnerabilities in real-world protocol implementations?
RQ4:How effective is the optimization of seed selector andmessage
mutator components in the exploration phase? (Appendix F)
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Table 2: Memory profiling results. For each attribute, the better mean value is highlighted in bold; the statistically significant

(𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.05) value of 𝐴12 is marked with an asterisk

Protocol Implementation

Avg mem (KB) Max mem (KB)

AFLNet* Medusa AFLNet* Medusa
mean mean ratio 𝐴̂12 mean mean ratio 𝐴̂12

MQTT

mosquitto (C) 169.6 24054.4 141.83 ∗1.00 529.6 73381.6 138.56 ∗1.00
moquette (Java) 568.0 2941.6 5.71 ∗1.00 4175.2 62208.0 14.89 ∗1.00

aedes (JavaScript) 122.4 4830.4 39.46 ∗1.00 11491.2 57091.2 4.96 ∗1.00
hbmqtt (Python) 94.4 22537.6 238.74 ∗1.00 626.4 191334.4 305.45 ∗1.00

hmq (Go) 467.2 39271.2 84.05 ∗1.00 35816.8 269080.0 7.51 ∗1.00

FTP

proftpd (C) 3.2 733.6 229.2 ∗1.00 186.4 3759.2 20.10 ∗1.00
apache FtpServer (Java) 1077.6 6372.0 5.91 ∗1.00 6231.2 129020.0 20.70 ∗1.00

ftp-srv (JavaScript) 1367.2 25807.2 18.87 ∗1.00 16963.2 120336.0 7.09 ∗1.00
pyftpdlib (Python) 96.8 2609.6 26.95 ∗1.00 1448.8 22080.8 15.24 ∗1.00

goftp (Go) 269.6 4424.8 16.41 ∗1.00 3934.4 21601.6 5.49 ∗1.00

DICOM

dcmtk (C) 294.0 3788.8 12.86 ∗1.00 738.4 7293.6 9.87 ∗1.00
dcm4che (Java) 3807.2 34453.6 9.05 ∗1.00 5772.0 98204.8 18.59 ∗1.00

pynetdicom (Python) 472.8 13150.4 27.81 ∗1.00 970.4 50437.6 51.97 ∗1.00
go-netdicom (Go) 704.8 77448.8 109.88 ∗1.00 1461.6 157300.0 107.62 ∗1.00

SMTP

exim (C) 77.6 1201.6 15.48 ∗1.00 323.2 4877.6 15.09 ∗1.00
Haraka (JavaScript) 10.4 14920.8 1434.69 ∗1.00 50.4 80295.2 1593.15 ∗1.00
salmon (Python) 4136.8 55048.0 13.3 ∗1.00 70676.0 96088.0 1.35 ∗1.00
go-guerrilla (Go) 52.8 4512.8 85.46 ∗1.00 136.0 9851.2 72.43 ∗1.00

RTSP
live555 (C) 7.2 4652.0 646.11 ∗1.00 40.0 7742.4 193.56 ∗1.00

opencv-rtsp (Python) 45135.2 46986.4 1.04 0.68 64420.8 64575.2 1.00 ∗0.84
rtsp-simple-server (Go) 259.2 13608.8 52.50 ∗1.00 565.6 19984.8 35.33 ∗1.00

Average 2818.7 19207.3 153.11 0.98 10788.4 73644.9 125.7 0.99

4.1 Experiment Setup

In the experiments, we adjusted AFLNet as AFLNet* to fuzz pro-
tocol implementations with different programming languages and
record memory consumption during fuzzing. We used 21 programs
from 5 protocols as evaluation benchmarks. We applied Mann-
WhitneyU test (𝑝-𝑣𝑎𝑙𝑢𝑒) [31] andVargha-Delaney statistic (𝐴12) [41]
for statistic test. All experiments are conducted on machines with
80 cores of Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz and 188 GB
RAM. The details of experiment setup can be found in Appendix C.

4.2 Evaluation of Exploration (RQ1)

After the exploration phase, PPG profiles the memory consumption
on different protocol state transitions of programs, in this exper-
iment, we assess the PPG produced by the exploration phase to
evaluate the Medusa’s capability for profiling memory consump-
tion. Specifically, we ran Medusa and AFLNet* on programs in
the evaluation datasets, each experiment was run for 24 hours and
repeated 5 times. Then we collected two type attributes of PPG:
➊ Avg memory. This attribute indicates the average memory con-
sumption of all state transitions. ➋ Max memory. This attribute
indicates the maximum memory consumption among all state tran-
sitions. These two attributes are used to assess fuzzer’s ability for
exploring resource consumption. For each attribute, we calculated
the mean value of the results over all 5 runs and computed the ratio
of Medusa’s mean value over AFLNet*. We further calculated the
𝑝-𝑣𝑎𝑙𝑢𝑒 to measure the statistical significance of the results and
𝐴12 to measure the chance that Medusa can perform better than
AFLNet* by randomly picking one result for comparison.

Table 2 shows the results. For memory consumption exploring,
Medusa can discover up to 1593× max memory consumption than
AFLNet*. Overall, Medusa discovers significantly bigger memory
consumption than AFLNet* on almost all the programs with on av-
erage 153.11× avg memory consumption and 125.7× max memory

consumption. The superiority of Medusa on avg memory consump-
tion indicates that Medusa can outperform AFLNet* to discover
more memory consumption for on average every state transition.
From Table 2 we also observe that Medusa discover more memory
consumption on 20 programs with the𝐴12 value is 1.00 and 𝑝-𝑣𝑎𝑙𝑢𝑒
smaller than 0.05, which means that we have sufficient confidence
to claim that Medusa has overwhelming superiority compared with
AFLNet* for exploring memory consumption.

4.3 Evaluation of Verification (RQ2)

In this experiment, we evaluate the ability of Medusa in simulating
DoS attack. Specifically, we used the PPGs generated from the explo-
ration phase of experiments in Section 4.2. The experimental DoS
environment is built upon docker containers. we used the breadth-
first algorithm [44] to generate candidate traces from the initial
state to the located stated transition. From the candidate traces we
selected the trace which achieves the biggest cumulative memory
consumption along the trace. We have tried different parameter
values in the experiment and found that different parameters have
little impact on the relative trend of the experimental results. There-
fore, we adopted the following configuration for entire experiments
and result presentation: ➊ Setting the memory limitation of the
system to 4GB. ➋ Setting the monitoring duration to 60 seconds. ➌
Setting the attack time to 10 seconds after the test program starts
up. ➍ Setting three level attack intensities: 1) Low. Sending 1 attack
input per second. 2) Medium. Sending 10 attack inputs per second.
3) High. Sending 100 attack inputs per second.

Memory Consumption. Fig. 6 illustrates the memory consump-
tion of the evaluated programs under simulated DoS attacks. From
Fig. 6, we can observe that for the same attack intensity, attack in-
puts generated fromMedusa can cause more memory consumption
obviously than AFLNet* on almost all the programs. On hbmqtt,
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Figure 6: Memory consumption under simulated DoS attacks (higher is better). Y-axis stands for the percentage of consumed

memory over the limitation of the whole system (4GB in our experiments). The red vertical line is the time to start sending

attack inputs

Table 3: 0-day memory exhaustion DoS vulnerabilities found

by Medusa

Protocol Program

Programming

Language

Exhaustion Type

MQTT mosquitto C System Memory Exhaustion
MQTT hmq Go System Memory Exhaustion
MQTT hbmqtt Python System Memory Exhaustion
FTP apache Ftpserver Java Java Heap Memory Exhaustion
FTP ftp-srv JavaScript JavaScript Heap Memory Exhaustion

DICOM go-netdicom Go System Memory Exhaustion

even the low attack intensity of Medusa can significantly outper-
form the high attack intensity of AFLNet*. Moreover, attack inputs
generated from Medusa caused in total six programs (mosquitto,
hbmqtt, hmq, apache FtpServer, ftp-srv, and go-netdicom) con-
sume excessive memory (out of 4GB) and killed by the system. For
AFLNet*, it only caused ftp-srv to consume excessive memory.
We further analyze these cases in Section 4.4.
Availability. We also evaluated the availability of programs under
simulated DoS. The details can be found in Appendix D.

4.4 Vulnerabilities Detection (RQ3)

In Section 4.3, we discovered several cases that can cause the pro-
grams to exhaust their memory and be killed. To test the severity
of these cases, we conducted simulated DoS attacks with different
system memory limitations (16G, 32G, and 64G) and confirmed that
these cases could indeed exhaust the system memory resources
on all of the limitation settings. We further confirmed that these
cases are memory exhaustion DoS vulnerabilities and still exist in
the latest version of programs. Finally, we found six 0-day memory
exhaustion DoS vulnerabilities as shown in Table 3. The analyzing
detail of these vulnerabilities can be found in Appendix E.

5 RELATEDWORK

Fuzzing techniques for protocol implementations can be classified
into blackbox, whitebox, greyboxmethods according to information

we obtain from the protocol to guide the fuzzing. Blackbox fuzzers
from academia [6, 26, 27, 34] and industry [11, 18, 36, 40] treat proto-
col implementations as a blackbox and use either mutation-based or
generation-based input generation technique to test the security of
protocol implementations. They are preferred in industry since the
fuzzing techniques do not pay attention to implementation details,
which is scalable to test various protocols. Whitebox fuzzers [10]
attempts to perform program analysis and guide the generation of
input to execute different paths. Greybox fuzzers collect coverage
or states to guide the input generation for testing the protocols.
The way of identifying new code coverage and states ranges from
human code annotations [5], invariants [16], response codes [37],
to state variables [7].

6 CONCLUSION

In this paper, we propose Medusa, a dynamic analysis framework
to unveil memory exhaustion DoS vulnerabilities in protocol im-
plementations. Medusa utilizes a protocol property graph to guide
exploring memory consumption in the explore phase and simulates
DoS attacks to verify vulnerabilities in the verification phase. Our
evaluation results demonstrate that Medusa can discover signifi-
cantly more memory consumption in the exploration and verifica-
tion phase compared to the baseline. Notably, Medusa found six
0-day vulnerabilities including one CVE ID.
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A THE METHODS OF EMPIRICAL STUDY

Here we discuss the methods we used to conduct the empirical
study.

To identify the protocol resource exhaustion vulnerabilities from
massive vulnerability information in the database, we first auto-
matically filtered vulnerabilities with the following methods: ➊

Checking whether the type of vulnerabilities related to resource
exhaustion. To automatically decide the type of vulnerabilities, we
rely on the Common Weakness Enumeration (CWE) [13] metric.
After investing the whole CWE list, we found several CWE types
related to resource exhaustion vulnerability (CWE-400, CWE-401,
CWE-404, CWE-770, CWE-789, CWE-1050, and CWE-1325). Vulner-
abilities with at least one of the above CWE types are selected out.
In addition, we checked whether the keyword "exhaust" exists in
the description of vulnerabilities to complement some vulnerabil-
ities which are related to resource exhaustion but without CWE
type or assigned with wrong CWE type. ➋ Checking whether the
vulnerabilities exist in the protocol implementation. For this, we
checked whether the descriptions of vulnerabilities contain some
keywords related to protocol. Specifically, we used "protocol"
and the name of several common-used protocol ("http", "mqtt",
"ftp", "dicom", "smtp", "rtsp", "ssh", "tls", and "telnet")
as keywords.
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We combined and applied above two methods on CVE database
with vulnerabilities from 2015 to 2022. Finally, we collected 205
vulnerabilities which related to resource exhaustion and exist in
protocol implementations. Based on the collected vulnerabilities,
we further conducted manual analyzing to identify the type of ex-
hausted resource. The detail results and the scripts will be released
on our website [2].

B IMPLEMENTATION DETAILS OF MEDUSA

State-aware fuzzer is implemented based on AFLNet [37]. To parse
the protocol, it follows the same paradigm as AFLNet which uses
embedded C functions to parse a test input into a sequence of re-
quest messages and extract protocol state from response messages.
A new protocol can be easily supported by extending these func-
tions. PPG uses graphviz [22] to record information and output it
in file ipsm.dot which can be viewed using [23]. PPG records extra
information related to state transitions (e.g. which message triggers
the max resource consumption) and output in file champion_josn
with JSON format.

As described in 3.2.1, Runtime Monitor is implemented base on
Linux’s /𝑝𝑟𝑜𝑐 Filesystem [9]. The main body of Runtime Moni-

tor is a loop, when Medusa starts its monitor process, Runtime

Monitor continuously accesses the 𝑝𝑟𝑜𝑐 Filesystem in the loop. To
improve the efficiency of Runtime Monitor, we don’t use the wrap
library of /𝑝𝑟𝑜𝑐 Filesystem (e.g. psutil [19]), instead, we use file
operators to directly access /𝑝𝑟𝑜𝑐 Filesystem and parse the resource
consumption from the file content. Furthermore, as /𝑝𝑟𝑜𝑐 Filesys-
tem is a Linux virtual file system [21] that its content updates in
real-time every time reading it, we design the access process in the
loop carefully to avoid frequently calling file 𝑜𝑝𝑒𝑛 and 𝑐𝑙𝑜𝑠𝑒 system
calls. Specifically, we call file 𝑜𝑝𝑒𝑛 at the initialization of Runtime

Monitor, then in the loop before each time calling file 𝑟𝑒𝑎𝑑 , we call
file 𝑙𝑠𝑒𝑒𝑘 function to move the file pointer to the head of the file.
This implementation trick significantly improves the efficiency of
Runtime Monitor.

C EXPERIMENT SETUP DETAILS

Evaluation Baseline Medusa’s fuzzer is built upon AFLNet. We
compared Medusa with AFLNet to evaluate its improvement for
exploring memory consumption. However, AFLNet is designed for
exploring protocol states and does not record memory consump-
tion, we had to make some adjustments to it in order to make it
feasible for comparison. Specifically, we adjusted AFLNet with the
following configurations: ➊ Using the blackbox mode of AFLNet
to make it available for protocol implementations with different
programming languages besides C. ➋ Recording the maximum
memory consumption on different state transitions during fuzzing
process. We call AFLNet under the above configurations AFLNet*
and used it as the baseline.
Evaluation Datasets. We used 5 protocols (MQTT, FTP, DICOM,
SMTP, and RTSP) which are commonly used in other protocol
fuzzing works [1, 4, 7, 37] as our evaluation protocols. To select the
programs for each protocol, we searched for implementations in
five popular programming languages, including C, Java, JavaScript,
Python, and Go, and finally selected 21 programs as the evaluation
benchmark. Detailed information for these programs can be found

in Table 4 or on our website [2]. The initial seeds used in fuzzing
were obtained from ProFuzzBench [32]. Note that the same initial
seeds were used for different implementations of the same protocol.
Evaluation Settings. We ran all fuzzing experiments for 24 hours,
to avoid bias caused by randomness [28]. We repeated each fuzzing
campaign for 5 times and appliedMann-WhitneyU test (𝑝-𝑣𝑎𝑙𝑢𝑒) [31]
and Vargha-Delaney statistic (𝐴12) [41] for statistic test.
Experiment Environment We conducted all experiments on ma-
chines with 80 cores of Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
and 188 GB RAM. We ran each fuzzing experiment in the docker
containers [14] with Ubuntu 20.04.3 LTS as the operating system.

Table 4: The real-world protocol programs used in the exper-

iments.

Protocol Implementation Language Version

MQTT

mosquitto C git commit ff97fbf
moquette Java git commit 3e6043b
aedes Javascript 0.46.3
hbmqtt Python git commit 07c4c70
hmq Go git commit b2e79c3

FTP

Proftpd c git commit 0e68a6c
apache FtpServer Java 1.2.0

ftp-srv Javascript git commit 18277e9
pyftpdlib Python git commit 2784660
goftp Go git commit f64f7c2

DICOM

dcmtk C git commit c749632
dcm4che Java git commit 2f3165a

pynetdicom Python git commit 5c2989e
go-netdicom Go git commit 7caf23f

SMTP

exim C git commit a3d3e7e
Haraka Javascript git commit 3198d18
salmon Python git commit a757003

go-guerrilla Go git commit aa54b3a

RTSP
live555 C git commit bbee4ed

opencv-rtsp Python git commit 14d4d2c
rtsp-simple-server Go git commit 8f48dfa

D AVAILABILITY

Specifically, the availability is assessed by how many requests are
processed by the program in a period of time. In this experiment, we
additionally simulated a legal user sending requests (5 requests per
second) to the program, we used throughput to represent the per-
centage of the requests that have been processed. 100% throughput
means the program processes all the requests sent by the legal user
which indicates a high availability. Fig. 7 shows the throughput of
the programs under simulated DoS. Overall, the throughput has a
negative correlation with memory consumption. The high-intensity
simulated attacks with attack inputs generated fromMedusa which
cause the maximum memory increase can also cause the maximum
decrease in throughput. This is because the attacks can lead to many
memory-related operations, such as memory allocation, which re-
duces the overall performance of the program and increases the
time delay for serving legal users, resulting in decreased through-
put.
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Figure 7: Availability under simulated DoS attacks (lower is better). The red vertical line is the time to start sending attack

inputs

E VULNERABILITIES DETAILS

Here we discuss the lessons we learn from the results of Table 3: ➊

We can see that we found memory exhaustion DoS vulnerabilities
on various protocol types (MQTT, FTP, and DICOM) and various
programming languages (C, Java, JavaScript, Python, and Go). This
again emphasizes that memory exhaustion DoS vulnerability is a
serious threat for protocol and exists in protocol implementations
of various programming languages. ➋ We also verified that the
vulnerabilities which exist in one implementation of a certain pro-
tocol do not exist in the protocol’s other implementations. This
indicates that memory exhaustion DoS vulnerabilities not only
exist in the protocol specification and stresses the importance to
focus on testing the protocol’s specific implementations. ➌ The ex-
haustion type is not limited to exhaust system memory, on apache
Ftpserver and ftp-srv, the vulnerabilities exhaust the memory
of language-internal components (Java VM [45] and JavaScript
VM [46]). This demonstrates the damage of memory exhaustion
DoS vulnerabilities as it may be much easier to exhaust the mem-
ory of language-internal components. ➍ Discovering and repairing
memory exhaustion DoS vulnerabilities in protocol manually is a
tedious and error-prone process as these vulnerabilities exist in the
implementation of the protocol rather than the specification. For
example, although CVE-2017-7651 has been patched since 2018, the
memory exhaustion DoS vulnerability still existed in Mosquitto for
5 years. it urges the demand for automatic tools to help developers
mitigate these vulnerabilities, Medusa is proposed for this.

F ABLATION STUDY (RQ4)

To demonstrate the effectiveness of our optimization on Seed Se-

lector andMessage Mutator components, we conducted an abla-
tion study by disabling optimization on these two components of
Medusa and used the original strategies in AFLNet as compar-
isons. Specifically, we obtained three variants of Medusa and ran
the additional fuzzing experiments as in Section 4.2 for them.

Fig. 8 shows the maximum memory consumption discovered by
Medusa and it’s three variants over all experiments. The results
show that our optimization on both Seed Selector and Message

Mutator contribute to Medusa for exploring memory consumption.
This can be concluded from three observations on Fig. 8: ➀ The
integral Medusa which enables the optimization on both Seed

Selector and Message Mutator achieves the overall best result (the
average median value for Medusa is 72197.14). ➁ The variant of
Medusa (Medusa-DB) which disables the optimization on both
Seed Selector andMessage Mutator gets the overall worst result
(the average median value for Medusa-DB is 64272.47). ➂ For
disabling the optimization on Seed Selector (Medusa-DS) and on
Message Mutator (Medusa-DM) separately, although they have
small differences from each other, they both achieve better results
compared with Medusa-DB (the average median value for Medusa-
DS and Medusa-DM is 69768.00 and 68072.19, which outperform
Medusa-DB by 9% and 6% respectively).
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