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Abstract—Function signature recovery is important for many
binary analysis tasks such as control-flow integrity enforce-
ment, clone detection, and bug finding. Existing works try to
substitute learning-based methods with rule-based methods to
reduce human effort.They made considerable efforts to enhance
the system’s performance, which also bring the side effect of
higher resource consumption. However, recovering the function
signature is more about providing information for subsequent
tasks, and both efficiency and performance are significant.

In this paper, we first propose a method called Nimbus for
efficient function signature recovery that furthest reduces the
whole-process resource consumption without performance loss.
Thanks to information bias and task relation (i.e., the relation
between parameter count and parameter type recovery), we
utilize selective inputs and introduce multi-task learning (MTL)
structure for function signature recovery to reduce computational
resource consumption, and fully leverage mutual information.
Our experimental results show that, with only about the one-
eighth processing time of the state-of-the-art method, we even
achieve about 1% more prediction accuracy over all function
signature recovery tasks.

Keywords—Function signature; multi-task learning; recurrent
neural network

I. INTRODUCTION

Function signature recovery plays an important role in
binary analysis, widely used in many security analysis works
as pre-processing such as bug finding [1], [2], clone detection
[3], [4], code hardening [5]–[11], etc. It is composed of two
tasks, parameter count recovery, and parameter type recovery.

Existing Works. Function signature recovery is challenging
work since most binaries in real applications are stripped,
which lose almost all high-level semantics and retain only low-
level information via machine code.

The majority of previous works mainly rely on experienced
analysts to recover the missing semantics from binary code [9],
[10], [12]–[16]. Recently, some researchers leverage machine
learning-based methods to avoid extracting excessive rules
via much human effort. EKLAVYA [17] and ReSIL [18]
utilize gated recurrent unit (abbreviated as GRU) [19] (one
kind of recurrent neural network) and get surprising results.
Coincidentally, both of them focus on improving recovery
performance (i.e., accuracy), but they leave the problem of
resource consumption aside, which should be taken into con-
sideration for production.

Our Solution. In this work, we take all the advantages
of machine learning models and try to optimize resource

consumption from the whole lifecycle of tool construction.
We introduce the 2 key designs to construct our efficient
function signature recovery tool Nimbus1 as follows, i.e., input
reduction and multi-task learning.

❶Reduce the input size via information bias. According to
our empirical study of a considerable dataset, we find that the
information about function signature is mainly gathered in the
front of a function rather than uniformly distributed throughout
the function (no matter in binary or assembly level). Taking
the input from the function head achieves more precise and
faster performance growth in all function signature recovery
tasks than inputting it all into the procedure.

❷Merging the learning models via mutual information of
different tasks. Intuitively, the data distribution of parameter
count and parameter type are relevant to each other as well
as the function semantics. According to our data analysis,
distribution relations widely exist. Existing works treat each
function signature recovery task independently. Specifically,
they recover each function signature (amount or type) with an
independent model, called single-task learning (STL) struc-
ture. This not only requires independent models to perform
prediction tasks separately, consuming a lot of memory and
running time but also ignores the mutual information between
task associations.

So we introduce multi-task learning (MTL) [20] structure,
which enables deep learning models to train on multiple
related tasks on one model and eventually get multiple outputs
for different tasks. MTL avoids repetitive work compared
with the STL structure, saving resources in both training
and testing procedures. In addition, the MTL structure fully
utilizes the related information via recovery tasks, improving
the performance and the ability to generalization.

Evaluation. We set up a credible dataset following the pre-
vious works, and thoroughly evaluate our system Nimbus on
different aspects. Compared with the state-of-the-art method
EKLAVYA, Nimbus is 9.92× faster on the training procedure
and saves about 87.8% time in the prediction procedure
both on GPU-equipped and CPU-only hardware environments.
Our lightweight and efficient tool design can help security
analysts perform pre-analysis or provide analysis results for
downstream tasks.

1The name of our system is derived from the book “Harry Potter”, and
the name is taken from the main character’s broomstick Nimbus 2000.
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The contributions of this paper are as follows:
• According to the empirical study, we verify the infor-

mation bias phenomenon in each binary level function,
and we prune the functions to keep highly informative
instructions as input.

• According to the intuitive relations of sub-tasks in func-
tion signature recovery, we first introduce the multi-task
learning structure to enhance function signature recovery
and customize an MTL-GRU architecture.

• We evaluate the prototype of Nimbus on the dataset, and
our work achieves a significant reduction in resource
consumption, while even getting about a 1% accuracy
increase.

The rest of the paper is organized as follows, Section II
introduces the motivation of our work. Section III defines the
problem. Section IV presents the workflow and our system
design. Section V evaluates our model. Section VI presents
the discussion. Section VII discusses some related works and
Section VIII concludes the paper.

II. MOTIVATION

Most learning-based function signature recovery works are
hard to use as a tool because they require hours or even days
of training on high-power GPUs and cost a lot when predicting
even though they achieve good performance. For example,
we rebuild EKLAVYA and find that the average time for
predicting a single function using GPU and CPU is 17.88ms
and 70.40ms, respectively. As a pre-work for many binary
analysis tasks, such resource consumption may affect their
efficiency, especially without high-power GPUs. In this paper,
we try to reduce the resource consumption of both training and
prediction. Nowadays, most works focus on improving model
performance, our work balance the performance and overhead.
We hope this contributes to the community.

Figure 1: Source code and its assembly code.

A. Model input

Most existing works use unfixed-length assembly codes
or byte codes as model inputs. Obviously, the longer the
input length, the more information the model obtains, and
the easier it is to improve the model performance. However,
longer inputs also require more computational resources. By
reducing the input length, we can save computational resources
from the source. By following the data selection mechanism
of EKLAVYA, we compile some widely used open-source
projects into binaries as our dataset. We analyze the dataset
and there are two key findings in the selection of model inputs.
The detail of the dataset is given in Section V.

1) Information bias - Does the information in the content
of the code follows a uniform distribution: During analysis,
we find that although the use of parameters is scattered through
the whole function, they are often introduced at the function
head. Figure 1 gives an example function and its assembly
code, and the import of parameters clusters at the function
head.

We anticipate that this phenomenon widely exists in binary
codes, i.e., that information about the function signature clus-
ters at the function head and we call this information bias. We
do several experiments to verify the existence of information
bias in Section V.

2) Input length - What input length is the most appropri-
ate: According to the analysis results of the function length
shown in Figure 2, we find that about 30% of the functions
are less than 40 instructions and about 70% of the functions
are less than 120 instructions, i.e., most functions are not that
long. Due to information bias, when the input reaches a certain
length, the following instruction may contain little valuable
information, so the overlong inputs may not be required.

Another interesting finding is a large gap between the mean
and the median of the function lengths. Precisely, the mean
is 165 and the median is 74. Combined with the statistical
distribution, we believe that the median is more representative
of the general function length. To observe the effect of
different input lengths on the model, we train models with
different input lengths around the median in Section V.
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Figure 2: Function lengths and their proportions. ’0s’ repre-
sents the function length is between [0, 20), and so on.

B. Model structure

Previous works treat function signature recovery tasks as
independent and use STL models to recover them. Specifically,
one model can only recover parameter count or one parameter
type at one specific location, so multiple models are required to
accomplish function signature recovery. However, in different
models, the same layers undertake often similar work as these
tasks are related, which undoubtedly leads to a waste of
computational resources. As a result, in the case of limited
computational power, it takes multiple times to train and use
models. If we can avoid repeated computation in those STL
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models, we can reduce computational resource consumption
structurally.

1) Task relation: Function signature recovery consists of
two parts: parameter count recovery and parameter type recov-
ery. Intuitively, there are two possible relations between tasks.
One is the relation between parameter count and parameter
types, and the other is between two parameter types in different
positions. We try to explore if these relations really exist. And
if so, whether we could improve performance with them.

To verify the intuition, we analyze the dataset, and the
results are shown in Figure 3. According to the results, the
parameter count and the parameter type are correlated, and
so do the parameter types in different positions. For example,
when the first parameter is struct*, the second one is most
probably struct* as well. In fact, we find that the above
relations widely exist in the dataset.

2) Multi-task learning structure: The MTL structure [20]
is proposed to make the model learn the information between
related tasks. It consists of shared layers and task-specific
layers. Different tasks share their intermediate representation
at the shared layer and get task-specific results at the task-
specific layer.

Nimbus benefits a lot from the MTL structure. First, it helps
Nimbus to select features. For a given task, its related tasks
give Nimbus the evidence of which features are useful and
help Nimbus to focus more on them. Second, the MTL helps
Nimbus learns more generalized representations. A model will
be overfitting if it learns both data and noise during training.
MTL forces Nimbus to adapt to the noise of different tasks,
which reduces overfitting and makes Nimbus more generalized.
Last but not the least, MTL actually merges multiple task-
specific layers into one shared layer and it obviously avoids
repeated computation thus reducing resource consumption.

III. PROBLEM DEFINITION

The distribution of parameter counts and parameter types
are shown in Figure 4 (a) and Figure 4 (b), respectively. Our
function signature recovery tasks are defined as follows.

• Parameter Count: The number of parameter passed to
function, abbreviated as PC.

PC ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, others} (1)

• Parameter Type: Parameter type for each parameter
passed to function, abbreviated as PT . PTi represents
the parameter at the ith position (i = 1, 2, ...).

PT ∈ {struct∗, int, char∗, void∗, int∗, enum,

char, void, float, struct, others,NULL},
(2)

where NULL denotes that the position has no parameters.
We make such definitions because over 99% of the function

parameters are less than 9, and parameter types defined in
PT (except others and NULL) account for more than 95%
of all parameter types. Note that our PT is different from
EKLAVYA, we remove the union because we think the union
has more high-level semantics. In assembly code, union will
be translated into a certain parameter type. In addition, we
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(a) Distribution of the parameter type with different parameter counts.
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(b) Relationship between the first parameter type and the second parameter type.

struct*
int
char*
void*

Figure 3: Relations of recover targets. To make the relations
clearer we have omitted some types that have a smaller
proportion.

add other parameter types such as char* to make our model
suitable for more situations.

0 1 2 3 4 5 6 7 8 8+
Parameter Count

0

10

20

Pr
op

or
tio

n 
(%

)

(a) Distribution of the parameter count.
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(b) Distribution of the parameter type.

Figure 4: Proportion of parameter count and parameter type.
’8+’ denotes more than 8.

The model input is the assembly code from the function
that can be easily obtained from the disassemblers, and the
output is the function signature PC and PT defined above.

IV. DESIGN

The workflow is shown in Figure 5. There are two sig-
nificant parts to our workflow. One is to vectorize the input
(word embedding), and the other is to train the classification
model (signature recovery). We make vectorization a separate
module because we believe that the mature word embedding
techniques retain more semantic information. We take assem-
bly code as input, and we employ the MTL structure which
allows the model outputs PC and multiple PT at the same
time.
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Source Code Binary Code Assembly Code Functions & Ground Truth

Prepared Data Word2Vec Learning Model Result for FSR

Sanitization
& Test/Train Data Split

Figure 5: An overview of the steps from building a dataset to recovering function signature.

A. Word embedding

To make the input learnable for the model, the first step
is to vectorize the input, which is called word embedding.
By representing semantically similar text with similar high-
dimensional vectors, word embedding essentially reprocesses
the input and improves the representation ability.

There are many word embedding techniques, including
one-hot representation, word2vec [21], and fasttext [22]. Our
experiment employs word2vec, which is a mature word embed-
ding tool that vectorizes words quickly and effectively given
corpus.

Notice that we are word embedding the instruction words
(mnemonics and operands) instead of the instructions. For
example, we split mov a,b as mov, a and b and embedding
them. Embedding instruction words has two advantages. First,
it disperses the semantic information from a single vector to
multiple vectors, and the dimension of a single vector can be
reduced. Thus the computational consumption can be reduced.
The second is that the relations within the instructions can be
captured, allowing the model to learn more content details. In
particular, we always split one instruction into four instruction
words and truncate for larger ones because we find that most
instructions can be converted into less than four instruction
words, which also facilitates our subsequent processing. At
last, we use the continuous bag of words (CBOW) negative
sampling method in word2vec to train instruction words into
128-dimensional vectors.

B. Signature recovery

Layer 1

Layer 2

Layer 3

Output: PC

Layer 1

Layer 2

Layer 3

Output: PT1

… …

Shared Layer 1

Shared Layer 2

Task Layer 1 Task Layer 2

Output: PC Output: PT1

Task Layer 3 … …

Output: PT2

Single Task Learning (STL) Structure Multiple Task Learning (MTL) Structure

Figure 6: Model structure for recovering PC, PT1, PT2, PT3,
the model has four outputs.

As we discussed in Section III, most functions contain three
or fewer parameters, so we employ an MTL model with one
input and four outputs (denoted as PC, PT1, PT2 and PT3).
Our model consists of two shared layers and 4 task-specific
layers, the model structure is shown in Figure 6. If we want
to recover extra parameter types, we only need to add a new
task-specified branch rather than a new model.

We choose to use a recurrent neural network (RNN) as the
Nimbus network architecture. RNN introduces “memory” to
the model. The network will memorize the previous infor-
mation and apply it to the calculation of the current output.
The “recurrent” comes from the fact that each node performs
the same task. RNN is very effective for sequence data, as it
mines time-series information and semantic information in the
data. To alleviate the problems of gradient disappearance and
gradient explosion, long-short term memory (LSTM) [23], a
variant of RNN, uses forget gate and input gate to update the
previously saved information. And GRU further simplifies the
gate structure, merges the forget gate and the input gate into
an update gate. We use GRU because it has fewer parameters
and trains faster.

V. EVALUATION

In this section, we try to answer the following questions,
by evaluating with control variables:

• RQ1: How do the different input lengths and resiz-
ing strategies (from head/tail) affect the method perfor-
mance?

• RQ2: How does the network structure (MTL/STL) affect
the method performance?

• RQ3: How much does the optimization of the whole
process save resource consumption?

Our experiments are performed on a server containing one
12-core Ryzen 3900X CPU with 48GB of RAM, and one
GeForce RTX 3080 GPU with 10GB of memory. The neural
network and data processing routines are written in Python,
using Keras [24].

A. Dataset
We set up a dataset for method evaluation. The binaries are

compiled from source files often used in the community, listed
in Table I.

457

Authorized licensed use limited to: Nanjing University. Downloaded on April 05,2023 at 06:28:44 UTC from IEEE Xplore.  Restrictions apply. 



1) Function Extraction: We compile the source files under
different configurations, and the final dataset consists of binary
files compiled with different compilers and versions (clang 3.0,
clang 4.0, clang 5.0, clang 6.0, clang 7, gcc 5, gcc 6, gcc 7,
gcc 8, gcc 9), and different optimization levels (-O0, -O1, -
O2, -O3, -Os) for x64. We use objdump [25] to disassemble
the binary code and get their assembly code in AT&T format.
Finally, we get a dataset consisting of 2,819,495 functions.

TABLE I: Project and version of dataset.

Project Version Project Version
Coreutils 8.31 Gtypist 2.9.5
Inetutils 1.9.4 Binutils 2.32

Grep 3.3 Gawk 5.0.0
Nginix 1.15.12 Sed 4.7
Libpng 1.6.37 Bash 5.0
Cflow - Less 530

BC 1.07 Bison 3.4
Nano 4.4 Indent 2.2.12
Wget 1.20.3 Gzip 1.9

2) Sanitization and duplication: To avoid the interference
of irrelevant information, we sanitize the specific address
and function name. Listing 1 shows a brief example. As the
instructions for direct jump, we replace the concrete address
with ’IMM’ (e.g., row 1, 3). As the function reference, we
replace the concrete function name with ’FUNC’ (e.g., row
2). To avoid repeated functions, we filter the functions in
the dataset based on MD5 after sanitization, and only one
repeated function is retained to ensure data balance. Only
272,900 distinct functions are retained after sanitization and
duplication.

Through compilation, we find that binaries compiled from
different projects and optimization levels may the same. To
avoid information leaks, sanitization only randomly keeps one
of them, which makes the evaluation of different optimization
levels biased, so we do not distinguish optimization levels in
the following discussion.

1 mov 0x2063a3(%rip), %rsi
2 je 401f31<add+0x34>
3 movabs $0xaaaaaaa9, %rax
4 cmp %rax,%rsi

1 mov IMM(%rip),%rsi
2 je IMM<FUNC>
3 movabs IMM,%rax
4 cmp %rax,%rsi

Listing 1: Assembly code before and after sanitization

We obtain the ground truth for the function signature by
analyzing the DWARF debugging information [26]. We divide
the dataset into a training set and a testing set at 8:2.

B. Metrics

1) Performance evaluation: Precision (P) and recall (R) are
commonly used to evaluate the model performance, which are
calculated as

P =
TP

TP + FP
;R =

TP

TP + FN
, (3)

where TP, FP, and FN denote true positive, false positive, and
false negative, respectively.

To measure the performance, we use weighted accuracy Acc
which can be calculated as

Acc =

n∑
i=1

σi ×Ri, (4)

where n denotes the number of classes and σi denotes the
proportion of the label i in the test set.

Weighted accuracy represents the correctly predicted rate
in the test set which is a widely used metric for multi-
classification tasks such as emotion recognition [27]–[29],
malware classification [30] and text classification [31]. Since
weighted accuracy reveals the model’s global performance
and emphasizes the effect of every label simultaneously,
EKLAVYA uses it and so do we.

2) Resource consumption evaluation: Since the compu-
tational resource is valuable, we also take optimizing the
resource consumption into account besides the model perfor-
mance. We define Efficiency:

Efficiency =

Nt∑
k=1

Acck

NG∑
i=1

Ti × Ui

, (5)

where Nt denotes task number, NG denotes GPU number,
Ti denotes time consumption and Ui denotes GPU usage
percentage, respectively. The larger of efficiency, the smaller
the resource consumed to reach the same accuracy relatively.

C. Experiment on performance
1) Compared with EKLAVYA: We compare Nimbus with

EKLAVYA in our dataset. We use cross-entropy loss for our
classification tasks, and the optimizer is Adam [32] with the
learning rate of 1e-4, β1 = 0.9, β2 = 0.999 like many
previous works. We use a dropout [33] probability of 0.2
on all layers to alleviate overfitting. We use 128-dimensional
vectors embedded from 40 instructions as input and train
for 100 epochs. To make the evaluation fair enough, we
reproduce EKLAVYA referring to their paper, with the same
hyper-parameters, the results are shown in Table II. Nimbus
performs slightly better than EKLAVYA, we achieve about 1%
more prediction accuracy over all function signature recovery
tasks. Column 2 (i.e., PC) represents the performance of
recovering the number of function parameters. Column 3 to 5
(i.e., PT1, PT2, PT3) represent the performance of recovering
variable types of different position parameters, respectively.

TABLE II: Model accuracy comparison.

Method PC (%) PT1 (%) PT2 (%) PT3 (%)
EKLAVYA 96.42 94.88 95.40 97.88

Nimbus 97.25 (+0.83) 95.88 (+1.00) 96.82 (+1.42) 98.40 (+0.52)

We further do experiments on inputs and model structures
of our model. The settings remain the same if not mentioned.
We find that MTL benefits our model in performance with
appropriate input according to the later experiment.
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2) Information bias shortens the input length: We train
an STL-GRU model with different instruction lengths and
positions, and the results are shown in Table III. The size
represents how many instructions are used as input. The
location represents where the instructions come from.

TABLE III: Ablation study of different locations and different
instructions’ input lengths. (Accuracy)

Size Location PC (%) PT1 (%) PT2 (%) PT3 (%)

5 Head 57.97 65.22 62.02 75.12
Tail 47.43 57.25 55.13 74.69

10 Head 89.78 85.79 86.68 91.87
Tail 66.17 75.02 72.41 82.74

20 Head 96.23 94.23 95.15 97.25
Tail 81.68 87.04 85.57 90.28

40 Head 96.74 95.46 96.23 97.76
Tail 87.99 90.99 90.45 93.52

80 Head 96.72 95.84 96.35 97.71
Tail 92.06 93.38 93.62 95.67

120 Head 97.01 95.94 96.60 97.95
Tail 93.86 94.63 95.00 96.50

When the size is 40 and the input comes from the head
and the tail, the accuracy of PC is 96.74% and 87.99%,
respectively. Experiments also show that 20 instructions from
the head achieve an approximately equal performance of 120
from the tail. Actually, instructions from the head always make
the model better than that from the tail in any size and any task,
which verifies our intuition of information bias. In addition,
the model performance becomes better as the input length
increases. However, there is little accuracy growth since size
reaches 40 when the input comes from function head, where
the Acc of PC, PT1, PT2 and PT3 are 96.74%, 95.46%,
96.23%, and 97.76% respectively. This phenomenon is caused
by information bias as well, i.e., little valuable information is
contained after the first 40 instructions.

In addition, with the size increase, the accuracy difference
between the head and tail decreases. A reasonable explanation
is that the distribution of function length cause it. As we
mentioned in Section II, about 70% of functions are less than
120 instructions. In another word, when the size is 120, the
instructions in the head are the same as those in the tail for
about 70% of the functions. When the size is large enough,
the information obtained from the tail comes from the head,
which brings us back to information bias.

To sum up, we think it is best to set the model input as 40
instructions from the head to achieve satisfying results.

3) MTL structure makes models obtain positive infor-
mation gain: We train STL-GRU and MTL-GRU models
with different sizes shown in Table IV. All the input comes
from the function head. When the size is large enough, MTL
performs better than STL in all tasks, e.g., the accuracy of
PC is 97.25% and 96.74% of MTL and STL with size 40.
This demonstrates the relations between signature recovery
tasks, and MTL models obtain information gain and improve
generalization to perform better. On the contrary, MTL does
not perform as well as STL when the size is insufficient,

e.g., 20. We conjecture two reasons for this situation. One
is information lack, and the other is noise propagation. In
case of information lack, STL, focusing on a single task with
limited information, is better. Besides, MTL propagates and
amplifies the noise between different tasks. Combined with
former experiments, Nimbus adopts the MTL structure.

TABLE IV: Ablation study of model structure. (Accuracy)

Size Structure PC (%) PT1(%) PT2 (%) PT3 (%)

5 MTL 57.59 ↓ 65.10 ↓ 62.08 ↓ 75.00 ↓
STL 57.97 65.22 62.02 75.12

10 MTL 89.53 ↓ 85.01 ↓ 86.10 ↓ 91.34 ↓
STL 89.78 85.79 86.68 91.87

20 MTL 95.98 ↓ 94.11 ↓ 95.44 ↑ 97.10 ↓
STL 96.23 94.23 95.15 97.25

40 MTL 97.25 ↑ 95.87 ↑ 96.82 ↑ 98.46 ↑
STL 96.74 95.46 96.23 97.76

80 MTL 97.29 ↑ 96.30 ↑ 97.18 ↑ 98.60 ↑
STL 96.72 95.84 96.35 97.71

120 MTL 97.12 ↑ 96.34 ↑ 96.88 ↑ 98.14 ↑
STL 97.01 95.94 96.60 97.95

D. Experiment on resource consumption

1) Compared with EKLAVYA: We compare Nimbus
with EKLAVYA as shown in Table V. About embedding,
EKLAVYA uses 500 instructions as input compared with our
40 instructions (160 instruction words), and the vector is 256-
dimensional compared with our 128-dimensional. Training
represents the average time in seconds that the model takes
to train one epoch. GT and CT represents the testing time on
GPU and CPU for one function in milliseconds, respectively.
Theoretically, the input matrix size of EKLAVYA is about
6× than Nimbus. With the MTL structure, Nimbus further
improves efficiency. As a result, EKLAVYA is about 9.92×
longer than Nimbus in training time and 8× longer both on
GPU and CPU in testing time.

We change embedding and size to further explore their
effect on time consumption. Even with the same input as
Nimbus, EKLAVYA still takes 1.56× in training and 2.96×
in testing on GPU. With the same size, our embedding
method leads to more time-consuming due to the use of
instruction words, but our model also performs better when
using instruction words.

TABLE V: Time consuming comparison. GT/CT denotes
testing time on GPU/CPU.

Structure Embedding Size Training (s) GT (ms) CT (ms)
STL EKLAVYA 500 942.01 17.88 70.40
STL EKLAVYA 40 132.72 6.56 10.26
STL Nimbus 40 216.05 7.87 24.52

MTL Nimbus 40 94.84 (9.9×) 2.20 (8.1×) 8.39 (8.4×)

The following experiments indicate that MTL saves resource
consumption in all aspects.

2) Time consumption & Efficiency: We record the time
consumption of the previous experiments and calculate their
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efficiency, shown in Table VI. Time represents the average
time in seconds that the model takes to train one epoch. GPU
represents the average GPU usage percent during training.

TABLE VI: Model efficiency comparison.

Size Structure Time (s) GPU (%) Efficiency (%)

5 MTL 37.09 40.52 17.28 (2.09×)
STL 122.27 25.75 8.27

10 MTL 40.19 58.73 14.91 (1.96×)
STL 132.82 35.00 7.62

20 MTL 47.81 79.37 10.08 (2.31×)
STL 139.09 62.90 4.37

40 MTL 94.84 78.58 5.21 (2.08×)
STL 216.05 71.25 2.51

80 MTL 168.43 82.73 2.79 (2.10×)
STL 380.44 76.63 1.33

Obviously, the smaller size makes the training time shorter
because it reduces the computational effort from the source.
In addition, the MTL model takes less training time compared
to STL models of the same size. Furthermore, the time
consumption of MTL increases less compared with STL as
the size increases. For example, when the size increases from
20 to 40, STL models need extra 76.96 minutes to train one
epoch, but the MTL model only needs extra 47.03 minutes.
The above time-saving effect is attributed to the fact that MTL
merges the task-specific layers of multiple STL models into
the shared layer, thus avoiding duplicate computations. We
find a similar phenomenon in efficiency, indicating that MTL
also makes higher utilization of computational resources.

TABLE VII: Model test time on both GPU and CPU.

Size Structure GPU (ms) CPU (ms)

5 MTL 1.47 2.18
STL 5.64 7.56

10 MTL 1.56 3.02
STL 5.89 10.12

20 MTL 1.78 4.84
STL 6.58 15.08

40 MTL 2.20 8.39
STL 7.87 24.52

80 MTL 2.93 15.23
STL 9.67 42.64

The trained model needs to be used on different machines,
which most likely do not have GPUs, so we use both GPU and
CPU to invoke the model to make predictions on the test set
and record the run time shown in Table VII. Here, GPU and
CPU represent the average time spent predicting one function
signature in milliseconds.

As we can see, similar to the training, it takes less time
testing with smaller input, and the time-saving effect of MTL
also applies in testing both on CPU and GPU, so MTL is
a CPU-friendly structure compared with STL. One important
finding is that as the size increases (take MTL as an instance,
from size 5 to 80), the time consumption of testing on the CPU
(6.98×) grows faster than that of the GPU (1.99×), which

further motivates us to use a shorter input to help CPU-only
analysts improve efficiency.

3) Storage consumption: MTL reduces the number of
models required to accomplish signature recovery, thus reduc-
ing the physical size that models require. In our experiment,
MTL model only requires 32MB while STL models require
60MB in total.

VI. DISCUSSION

A. Representative work

In the above, we compare the most relevant work
EKLAVYA to our work. ReSIL is a function signature re-
covery system optimized for EKLAVYA, we will discuss the
differences between ReSIL and Nimbus in the following paper.
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Figure 7: Distribution of parameter types under different return
types.

EKLAVYA’s accuracy decreases when the inputs are opti-
mized functions. ReSIL systematically discusses the reasons
for the performance degradation and optimizes it. ReSIL
improves the accuracy in inferring function signatures, for
example, ReSIL improved the accuracy of recovery PC from
84.8% to 92.67% at optimization level O1.

ReSIL improves accuracy by essentially using domain-
specific knowledge. Inserting additional instructions to the
input actually provides extra information from human knowl-
edge, and removing unrelated instructions helps the model to
focus more on useful features.

TABLE VIII: The effect of different locations and input length
of the instructions on the model accuracy.

Size Location RT (%)

10 Head 67
Tail 72

20 Head 73
Tail 75

40 Head 74
Tail 76

Different from ReSIL, our work improves not only per-
formance but also efficiency. We prefer to make the model
more usable without introducing domain-specific knowledge.
At the same time, ReSIL and our improvement approach are
compatible, which means that both works can be applied
simultaneously.
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B. Return type

The return type, as one of the characteristics of the function,
can also provide part of the pre-information for function
signature recovery. During exploratory data analysis, we find
that the information of function return type also has spatial
locality, clustered at the function tail. To verify the intuition,
we do similar ablation experiments on return type and the
results are shown in Table VIII.

The result indicates that the instructions from the bottom
of a function can provide more related information about the
function return type.

In addition, we also find differences in the distribution
of parameter types under different return types, as shown
in Figure 7. Obviously, functions with the return type of
struct* employ more than 40% of the parameters with type
struct*. The aforementioned information bias and distribution
preference of return type may help improve function signature
recovery or other security tasks in the future.

VII. RELATED WORKS

A. Information recovery from stripped binaries

Parameter type recovery in function signature recovery
is essentially the process of recovering high-level semantic
information (variable types) from stripped binaries, which can
be seen as a special kind of task of type inference. Type
inference can be basically divided into two categories, rule-
based and machine learning-based.

Lin et al. [14] formulate rules based on expert knowledge
for type inference. [13], DIVINE [12], TIE [15], Second-
Write [16] also use analysis algorithms such as live variable
analysis and manually formulate rules to infer variable tpyes.
TypeArmor [9] and τCFI [10] use live variable analysis and
heuristic methods to recover function signatures. Lin and Gao
[34] investigates the effect of optimization level on function
signature recovery.

Some works introduce machine learning to the task and get
some good results. BITY [35] uses the support vector machine
(SVM) to classify type inference. TYPEMINER [36] uses both
the Random Forest classifier and linear SVM to recover the
type in multiple steps. CATI [37] uses CNNs, combined with
assembly context as assistance to locate and infer variable
types.

B. Input for binary analysis

Choosing an appropriate input is an important step for the
success of binary analysis. However, due to the complexity
and variety of binary analysis tasks, different inputs are used
for different models and tasks to achieve the best results.

MECS [38] directly detect malicious executables with byte
sequences. Rosenblum et al. [39] incorporates both idiom
features and control flow structure features to identify function
entry points. SMIT [40] extracts the function-call graph from
a binary program and uses the graph matching algorithm to
determine program similarity. ORIGIN [41] extracts signifi-
cant features from binary programs and recovers provenance
with the conditional random field. MutantX-S [42] extracts

representative features from malware samples to cluster mal-
ware into families.TEDEM [43] automatically finds bugs with
bug signatures. Pewny et al. [44] lifts binary codes to the
intermediate representation (IR) to obtain the semantics at a
basic block level. Genius [45] converts the control-flow graphs
into vectors and achieves realtime bug search. RENN [46]
learns memory alias dependencies with the binary encoding
of instructions and memory region information. XDA [47]
learns different contextual dependencies and disassembles with
raw machine code. ASTERIA [48] uses the abstract syntax
tree (AST) to detect similarity with Tree-LSTM. jTrans [49]
tokenizes raw assembly codes and embeds control flow infor-
mation to detect binary code similarity.

C. Multi-task learning

Multi-task learning is a common effective machine learning
architecture where multiple tasks are solved simultaneously.
Due to domain information sharing between different tasks,
the models are more generalized and robust compared with
single-task learning [50].

Many researchers try to improve the MTL performance
by modifying the architecture. Misra et al. [51] proposes
“cross-stitch”, a new sharing unit, to learn a combination
of shared and task-specific representations. MRN [52] alle-
viates negative-transfer and under-transfer by jointly learning
features and task relationships. Deep-AMTFL [53] prevents
negative transfer by introducing an asymmetric autoencoder
term. SNR [54] modularizes the shared low-level hidden
layers into multiple layers and controls the connection of sub-
networks to improve accuracy and maintain efficiency.

MTL shows excellent results in many applications. Giri
et al. [55] uses MTL for speech recognition in reverberant
environments. Isonuma et al. [56] addresses document summa-
rization in the framework of MTL. Zou et al. [57] utilize MTL
for web searching. Zhou et al. [58] improves the robustness of
machine translation with MTL. MKM-SR [59] use MTL for
the session-based recommendation. Wang et al. [60] proposed
an MTL approach for code understanding. Xie et al. [61]
design an MTL method for code summarization. MTLFace
[62] alleviates the effect of age variation in face recognition
with MTL. DeepCVA [63] uses the MTL model to assess
software vulnerabilities with better performance and less time.

VIII. CONCLUSION

In this paper, we present an MTL-GRU model with selective
inputs to accomplish function signature recovery and reduce
resource consumption. Based on the intuition of information
bias, we used two selection strategies that are input length
selection and input position selection. Experimental results
verify our intuition that most information about function
signature is gathered at the head of the function. In addition,
motivated by the relationship between the function signature
recovery tasks, we make the best use of the correlated infor-
mation with multi-task learning. As a result of the selective
inputs and multi-task learning, our model improves recovery
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accuracy and greatly reduces resource consumption both in
time and storage size.
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